初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后练习题
展开六年级数学下册第五章基本平面图形难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,那么线段AC的长为( )
A.10cm B.2cm C.10或2cm D.无法确定
2、中国古代大建筑群平面中统率全局的轴线称为“中轴线”,北京中轴线是古代中国独特城市规划理论的产物,故宫是北京中轴线的重要组成部分.故宫中也有一条中轴线,北起神武门经乾清宫、保和殿、太和殿、南到午门,这条中轴线同时也在北京城的中轴线上.图中是故宫博物院的主要建筑分布图.其中,点A表示养心殿所在位置,点O表示太和殿所在位置,点B表示文渊阁所在位置.已知养心殿位于太和殿北偏西方向上,文渊阁位于太和殿南偏东方向上,则∠AOB的度数是( )
A. B. C. D.
3、如图,O是直线AB上一点,则图中互为补角的角共有( )
A.1对 B.2对 C.3对 D.4对
4、已知,点C为线段AB的中点,点D在直线AB上,并且满足,若cm,则线段AB的长为( )
A.4cm B.36cm C.4cm或36cm D.4cm或2cm
5、如图,C为线段上一点,点D为的中点,且,.则的长为( ).
A.18 B.18.5 C.20 D.20.5
6、如图,将三个三角板直角顶点重叠在一起,公共的直角顶点为点,若,,那么的度数为( )
A. B. C. D.
7、如图,点是线段的中点,点是的中点,若,,则线段的长度是( )
A.3cm B.4cm C.5cm D.6cm
8、芳芳放学从校门向东走400米,再往北走200米到家;丽丽出校门向东走200米到家,则丽丽家在芳芳家的( )
A.东南方向 B.西南方向 C.东北方向 D.西北方向
9、木匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是( )
A.两点之间线段最短 B.过一点有无数条直线
C.两点确定一条直线 D.两点之间线段的长度叫做这两点之间的距离
10、下列两个生活、生产中现象:①用两个钉子就可以把木条固定在墙;②植树时,只要定出两棵树的位置就能确定同一行树所在直线;③从A地到B地架设电线,总是尽可能沿着直线架设;④把弯曲的公路修直就能缩短路程.其中可以用“两点之间线段最短”来解释现象为( )
A.①② B.①③ C.②④ D.③④
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图所示的网格是正方形网格,∠BAC_____∠DAE.(填“>”,“=”或“<”)
2、把一个直径是10厘米的圆分成若干等份,然后把它剪开,照如图的样子拼起来,拼成的图形的周长比原来圆的周长增加_______厘米.
3、如果一个角的补角是,那么这个角的度数是________.
4、转化0.15°为单位秒是______.
5、如图,已知点O在直线AB上,OC⊥OD,∠BOD:∠AOC=3:2,那么∠BOD=___度.
三、解答题(5小题,每小题10分,共计50分)
1、如图,线段AB的长为12,C是线段AB上的一点,AC=4,M是AB的中点,N是AC的中点,求线段MN的长.
2、如图,已知平分平分.
(1)求的度数.
(2)求的度数.
3、如图,已知A,B,C,D四点,按下列要求画图形:
(1)画射线CD;
(2)画直线AB;
(3)连接DA,并延长至E,使得AE=DA.
4、如图,直线、相交于点,,.
(1)若,则 __________.
(2)从(1)的时刻开始,若将绕以每秒15的速度逆时针旋转一周,求运动多少秒时,直线平分.
(3)从(1)的时刻开始,若将绕点逆时针旋转一周,如果射线是的角平分线,请直接写出此过程中与的数量关系.(不考虑与、重合的情况)
5、一副三角板按如图1所示放置,边在直线上,.
(1)求图1中的度数;
(2)如图2,将三角板绕点O顺时针旋转,转速为,同时将三角板绕点O逆时针旋转,转速为,当旋转到射线上时,两三角板都停止转动.设转动时间为.
①在范围内,当时,求t的值;
②如图3,旋转过程中,作的角平分线,当时.直接写出时间的值.
-参考答案-
一、单选题
1、C
【解析】
【分析】
分AC=AB+BC和AC=AB-BC,两种情况求解.
【详解】
∵A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,
当AC=AB+BC时,
AC=6+4=10;
当AC=AB-BC时,
AC=6-4=2;
∴AC的长为10或2cm
故选C.
【点睛】
本题考查了线段的和差计算,分AB,BC同向和逆向两种情形是解题的关键.
2、B
【解析】
【分析】
由图知,∠AOB=180°−+,从而可求得结果.
【详解】
∠AOB=180°−+=180°-37°=143°
故选:B
【点睛】
本题考查了方位角及角的和差运算,掌握角的和差运算是关键.
3、B
【解析】
【分析】
根据补角定义解答.
【详解】
解:互为补角的角有:∠AOC与∠BOC,∠AOD与∠BOD,共2对,
故选:B.
【点睛】
此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.
4、C
【解析】
【分析】
分点D在点B的右侧时和点D在点B的左侧时两种情况画出图形求解.
【详解】
解:当点D在点B的右侧时,
∵,
∴AB=BD,
∵点C为线段AB的中点,
∴BC=,
∵,
∴,
∴BD=4,
∴AB=4cm;
当点D在点B的左侧时,
∵,
∴AD=,
∵点C为线段AB的中点,
∴AC=BC=,
∵,
∴-=6,
∴AB=36cm,
故选C.
【点睛】
本题考查了线段的和差,以及线段中点的计算,分两种情况计算是解答本题的关键.
5、C
【解析】
【分析】
根据线段中点的性质,可用CD表示BC,根据线段的和差,可得关于CD的方程,根据解方程,可得CD的长,AC的长.
【详解】
解:由点D为BC的中点,得
BC=2CD=2BD,
由线段的和差,得
AB=AC+BC,即4CD+2CD=30,
解得CD=5,
AC=4CD=4×5=20cm,
故选:C;
【点睛】
本题考查了两点间的距离,利用了线段中点的性质,线段的和差.
6、B
【解析】
【分析】
根据∠ABE=45°,由角的和差关系求出∠CBG,再根据∠GBH=30°,由角的和差关系求出∠FBG,最后根据∠FBC=∠FBG-∠CBG进行计算即可.
【详解】
解:∵∠ABE=45°,
∴∠CBE=45°,
∴∠CBG=45°,
∵∠GBH=30°,
∴∠FBG=60°,
∴∠FBC=∠FBG-∠CBG=60°-45°=15°.
故选B.
【点睛】
此题考查了角的和差计算,关键是根据已知条件求出角的度数,要能根据图形找出角之间的关系.
7、B
【解析】
【分析】
根据中点的定义求出AE和AD,相减即可得到DE.
【详解】
解:∵D是线段AB的中点,AB=6cm,
∴AD=BD=3cm,
∵E是线段AC的中点,AC=14cm,
∴AE=CE=7cm,
∴DE=AE-AD=7-3=4cm,
故选B.
【点睛】
本题考查了中点的定义及两点之间的距离的求法,准确识图是解题的关键.
8、B
【解析】
略
9、C
【解析】
【分析】
结合题意,根据直线的性质:两点确定一条直线进行分析,即可得到答案.
【详解】
结合题意,匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是:两点确定一条直线
故选:C.
【点睛】
本题考查了直线的知识;解题的关键是熟练掌握直线的性质,从而完成求解.
10、D
【解析】
【分析】
分别利用直线的性质以及线段的性质分析得出答案.
【详解】
解:①用两个钉子就可以把木条固定在墙上,是两点确定一条直线,故此选项错误;
②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线,是两点确定一条直线,故此选项错误;
③从A地到B地架设电线,总是尽可能沿着直线架设,是两点之间,线段最短,故此选项正确;
④把弯曲的公路改直,就能缩短路程,是两点之间,线段最短,故此选项正确;
故选:D.
【点睛】
此题主要考查了直线的性质以及线段的性质,正确把握直线与线段的性质是解题关键.
二、填空题
1、<
【解析】
【分析】
在Rt△ABC中,可知∠BAC的度数小于45°,在Rt△ADE中,可知∠DAE=45°,进而判断出∠BAC与∠DAE的大小.
【详解】
解:由图可知,在Rt△ABC中,BA=3BC,
∴∠BAC的度数小于45°,
在Rt△ADE中,可知DA=DE,
∴∠DAE=45°,
∴∠BAC<∠DAE,
故答案为:<.
【点睛】
本题考查角的大小比较,解题的关键是根据网格图得到两个直角三角形边的关系即可.
2、10
【解析】
【分析】
由圆的面积推导过程可知:将圆拼成近似的长方形后,长方形的长就等于圆的周长的一半,宽就等于圆的半径,从而可知,这个长方形的周长比原来圆的周长多出了两个半径的长度,据此即可求解.
【详解】
解:因为将圆拼成近似的长方形后,长方形的长就等于圆的周长的一半,宽就等于圆的半径,
所以这个长方形的周长比原来圆的周长多出了两个半径的长度,即多出了一个直径的长度,也就是10厘米.
故答案为:10.
【点睛】
本题考查认识平面图形,理解图形周长的意义和拼图前后之间的关系是解决问题的关键.
3、60°##60度
【解析】
【分析】
根据和为180度的两个角互为补角求解即可.
【详解】
解:根据定义一个角的补角是120°,
则这个角是180°-120°=60°,
故答案为:60°.
【点睛】
本题考查了补角的定义,掌握补角的定义是解题的关键.
4、540秒
【解析】
【分析】
先把度化为分,再把分化为秒即可.
【详解】
故答案为:540秒
【点睛】
本题考查了度、分、秒之间的互化,注意它们相邻两个单位间的进率都是六十,且高级单位的量化为低级单位的量要乘以进率.
5、54
【解析】
【分析】
根据平角等于180°得到等式为:∠AOC+∠COD+∠DOB=180°,再由∠COD=90°,∠BOD:∠AOC=3:2即可求解.
【详解】
解:∵OC⊥OD,
∴∠COD=90°,
设∠BOD=3x,则∠AOC=2x,
由题意知:2x+90°+3x=180°,
解得:x=18°,
∴∠BOD=3x=54°,
故答案为:54°.
【点睛】
本题考查了平角的定义,属于基础题,计算过程中细心即可.
三、解答题
1、
【解析】
【分析】
根据求解即可.
【详解】
解:由题意知:,
∴
∴线段MN的长为4.
【点睛】
本题考查了线段的中点有关的计算.解题的关键在于正确的表示线段之间的数量关系.
2、 (1)60°
(2)10°
【解析】
【分析】
(1)根据角平分线的定义得∠AOC =2∠AOB,即可求解;
(2)先求出∠COE的度数,再求出∠DOE的度数,最后根据∠COD=∠COE-∠DOE计算即可.
(1)
∠AOB =,OB平分∠AOC
∠AOC =2∠AOB=2=
(2)
∠AOE=,∠AOC =
∠COE=∠AOE-∠AOC=-=
又OD平分∠AOE
∠DOE=∠AOE==70°
∠COD=∠COE-∠DOE=-=
【点睛】
本题主要考查角平分线的定义,掌握角平分线把已知角分成两个相等的角是解题的关键.
3、 (1)见解析
(2)见解析
(3)见解析
【解析】
【分析】
(1)画射线CD即可;
(2)画直线AB即可;
(3)连接DA,并延长至E,使得AE=DA即可.
(1)
解:如图所示,射线CD即为所求作的图形;
(2)
解:如图所示,直线AB即为所求作的图形;
(3)
解:如图所示,连接DA,并延长至E,使得AE=DA.
【点睛】
本题考查了作图-复杂作图、直线、射线、线段,解决本题的关键是根据语句准确画图.
4、 (1)30°
(2)11或23秒
(3)或
【解析】
【分析】
(1)根据,,利用余角性质得出∠EOB=90°-∠COE=90°-30°=60°,根据,利用余角性质得出∠BOF=90°-∠EOB=90°-60°=30°即可;
(2)解分两种情形,平分,得出,,设运动秒时 根据运动转过的角度列方程,平分,,根据运动转过的角度列方程,解方程即可;
(3)分四种情况OE在∠COB内,OE在∠AOC内,OE在∠AOD内,OE在∠DOB内,根据射线是的角平分线∠COP=∠EOP,利用角的和差计算即可.
(1)
解:∵,,
∴∠EOB=90°-∠COE=90°-30°=60°,
∵,
∴∠BOF=90°-∠EOB=90°-60°=30°,
故答案是:30°;
(2)
解分两种情形,
情况一
∵平分,
∴,
∴,
设运动秒时,平分,
根据题意得:,
解得:;
情况二
∵平分,
∴,
设运动秒时,平分,
根据题意得:,
解得:;
综上:运动11或23秒时,直线平分;
(3)
解:∵射线是的角平分线
∴∠COP=∠EOP,∠AOC=∠EOF=90°,
∴∠AOP=90°+∠COP=90°+∠POE,
∵∠COE=∠BOF,
∴∠POE=,
∴,
∵∠COE=∠BOF,射线是的角平分线,
∴∠POC=,
∴∠AOP=90°-∠COP=90°-,
∴,
∵∠COE=90°+∠COF=∠BOF,射线是的角平分线,
∴∠POC=,
∴∠AOP=90°-∠COP=90°-,
∴,
∵∠COE=90°+∠BOE=∠BOF,射线是的角平分线,
∴∠POC=,
∴∠AOP=90°+∠COP=90°+,
∴;
综上:或.
【点睛】
本题考查余角定义,角平分线有关的运算,一元一次方程,分类讨论思想的应用,掌握余角定义,角平分线有关的运算,一元一次方程,分类讨论思想的应用是解题关键.
5、 (1)
(2)①2s;②s或s或s.
【解析】
【分析】
(1)利用角的和差关系可得从而可得答案;
(2)①先求解重合的时间,再画出图形,结合几何图形与角的和差关系列方程,再解方程即可;②分情况讨论:当时,结合①可得 当时, 当时,利用角的和差关系列方程 解方程即可,当时,如图,当 利用角的和差关系列方程 再解方程即可,当时, 当时,利用角的和差关系列方程,再解方程即可,从而可得答案.
(1)
解: ,
(2)
解:① 则重合时的时间为:(s),
当时,
解得:
所以当旋转2s时,
②当旋转到射线上时,(s),
当时,结合①可得
当重合时,(s),重合时,(s),如图,
所以当时,
当重合时,(s),如图,
当时,
平分
解得:
当重合时,(s),
当时,如图,
平分
解得: 不符合题意,舍去,
当重合时,(s),
当
平分
解得:
如图,当再次重合时,(s),
当时,
如图,当重合时,(s)
当时,
平分
解得:
综上:当时,s或s或s.
【点睛】
本题考查的是几何图形中角的和差关系,角的动态定义的理解,一元一次方程的应用,“数形结合与利用一元一次方程解决动态几何问题”是解本题的关键.
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂检测题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂检测题,共21页。试卷主要包含了如图,一副三角板,延长线段至点,分别取等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后作业题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后作业题,共25页。试卷主要包含了在数轴上,点M,若,则的补角的度数为,已知,则的补角等于,下列两个生活,已知,则的补角的度数为等内容,欢迎下载使用。
初中数学第五章 基本平面图形综合与测试同步测试题: 这是一份初中数学第五章 基本平面图形综合与测试同步测试题,共25页。试卷主要包含了在一幅七巧板中,有我们学过的等内容,欢迎下载使用。