冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后复习题
展开九年级数学下册第二十九章直线与圆的位置关系定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).
A.20° B.25° C.30° D.40°
2、已知半圆O的直径AB=8,沿弦EF折叠,当折叠后的圆弧与直径AB相切时,折痕EF的长度m( )
A.m=4 B.m=4 C.4≤m≤4 D.4≤m≤4
3、如图,AB,BC,CD分别与⊙O相切于E、F、G三点,且ABCD,BO=3,CO=4,则OF的长为( )
A.5 B. C. D.
4、已知⊙O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系是( )
A.相离 B.相切 C.相交 D.相交或相切
5、如图,⊙O的半径为2,PA,PB,CD分别切⊙O于点A,B,E,CD分别交PA,PB于点C,D,且P,E,O三点共线.若∠P=60°,则CD的长为( )
A.4 B.2 C.3 D.6
6、如图,若的半径为R,则它的外切正六边形的边长为( )
A. B. C. D.
7、如图,AB是⊙O的直径,点D在⊙O上,连接OD、BD,过点D作⊙O的切线交BA延长线于点C,若∠C=40°,则∠B的度数为( )
A.15° B.20° C.25° D.30°
8、平面内,⊙O的半径为3,若点P在⊙O外,则OP的长可能为( )
A.4 B.3 C.2 D.1
9、已知M(1,2),N(3,﹣3),P(x,y)三点可以确定一个圆,则以下P点坐标不满足要求的是( )
A.(3,5) B.(﹣3,5) C.(1,2) D.(1,﹣2)
10、如图,矩形ABCD中,G是BC的中点,过A、D、G三点的⊙O与边AB、CD分别交于点E、点F,给出下列判断:(1)AC与BD的交点是⊙O的圆心;(2)AF与DE的交点是⊙O的圆心;(3)AE=DF;(4)BC与⊙O相切,其中正确判断的个数是( )
A.4 B.3 C.2 D.1
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,正方形ABCD内接于⊙O,点P在上,则∠BPC的度数为_____.
2、如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点,若∠P = 50°,则∠ACB =_____________°
3、如图,PA是⊙O的切线,A是切点.若∠APO=25°,则∠AOP=___________°.
4、如图所示,在Rt△ABC中,∠ACB = 90°,∠A = 30°,AC = 15 cm,点O在中线CD上,当半径为3 cm的⊙O与△ABC的边相切时,OC =_________ .
5、如图,正五边形ABCDE内接于⊙O,作OF⊥BC交⊙O于点F,连接FA,则∠OFA=_____°.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知AB是⊙P的直径,点在⊙P上,为⊙P外一点,且∠ADC=90°,2∠B+∠DAB=180°
(1)试说明:直线为⊙P的切线.
(2)若∠B=30°,AD=2,求CD的长.
2、如图,是的直径,是圆上两点,且有,连结,作的延长线于点.
(1)求证:是的切线;
(2)若,求阴影部分的面积.(结果保留)
3、如图,在中,,BO平分,交AC于点O,以点O为圆心,OC长为半径画.
(1)求证:AB是的切线;
(2)若,,求的半径.
4、数学课上老师提出问题:“在矩形中,,,是的中点,是边上一点,以为圆心,为半径作,当等于多少时,与矩形的边相切?”.
小明的思路是:解题应分类讨论,显然不可能与边及所在直线相切,只需讨论与边及相切两种情形.请你根据小明所画的图形解决下列问题:
(1)如图1,当与相切于点时,求的长;
(2)如图2,当与相切时,
①求的长;
②若点从点出发沿射线移动,连接,是的中点,则在点的移动过程中,直接写出点在内的路径长为______.
5、如图,AB为的切线,B为切点,过点B作,垂足为点E,交于点C,连接CO,并延长CO与AB的延长线交于点D,与交于点F,连接AC.
(1)求证:AC为的切线:
(2)若半径为2,.求阴影部分的面积.
-参考答案-
一、单选题
1、B
【解析】
【分析】
连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.
【详解】
解:连接OA,如图,
∵PA是⊙O的切线,
∴OA⊥AP,
∴∠PAO=90°,
∵∠P=40°,
∴∠AOP=50°,
∵OA=OB,
∴∠B=∠OAB,
∵∠AOP=∠B+∠OAB,
∴∠B=∠AOP=×50°=25°.
故选:B.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
2、D
【解析】
【分析】
根据题意作出图形,根据垂径定理可得,设,则,分情况讨论求得最大值与最小值,即可解决问题
【详解】
解:如图,
根据题意,折叠后的弧为,为切点,设点为所在的圆心,的半径相等,即,连接,设交于点,
根据折叠的性质可得,又则四边形是菱形,且
设,则
则当取得最大值时,取得最小值,即取得最小值,
当取得最小值时,取得最大值,
根据题意,当点于点重合时,四边形是正方形
则
此时
当点与点重合时,此时最小,
则
即
则
故选D
【点睛】
本题考查了垂径定理,切线的性质,折叠的性质,勾股定理,分别求得的最大值与最小值是解题的关键.
3、D
【解析】
【分析】
连接OF,OE,OG,根据切线的性质及角平分线的判定可得OB平分,OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得.
【详解】
解:连接OF,OE,OG,
∵AB、BC、CD分别与相切,
∴,,,且,
∴OB平分,OC平分,
∴,,
∵,
∴,
∴,
∴,
,
∴,
∴,
故选:D.
【点睛】
题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.
4、B
【解析】
【分析】
圆的半径为 圆心O到直线l的距离为 当时,直线与圆相切,当时,直线与圆相离,当时,直线与圆相交,根据原理直接作答即可.
【详解】
解: ⊙O的直径为10cm,圆心O到直线l的距离为5cm,
⊙O的半径等于圆心O到直线l的距离,
直线l与⊙O的位置关系为相切,
故选B
【点睛】
本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.
5、A
【解析】
【分析】
,先证明,得出,,得出,过点作,在中,设,则,利用勾股定理求出,即可求解.
【详解】
解:连接,
在和,
PA,PB,分别切⊙O于点A,B,
,
,
,
,
,
是等边三角形,
,
,
又,
,
,
,
过点作,如下图
根据等腰三角形的性质,
点为的中点,
,
在中,
设,则,
,
,
解得:,
,
,
故选:A.
【点睛】
本题考查了圆的切线,三角形全等、等腰三角形、勾股定理,解题的关键是添加适当的辅助线,掌握切线的性质来求解.
6、B
【解析】
【分析】
如图连结OA,OB,OG,根据六边形ABCDEF为圆外切正六边形,得出∠AOB=60°△AOB为等边三角形,根据点G为切点,可得OG⊥AB,可得OG平分∠AOB,得出∠AOC=,根据锐角三角函数求解即可.
【详解】
解:如图连结OA,OB,OG,
∵六边形ABCDEF为圆外切正六边形,
∴∠AOB=360°÷6=60°,△AOB为等边三角形,
∵点G为切点,
∴OG⊥AB,
∴OG平分∠AOB,
∴∠AOC=,
∴cos30°=,
∴.
故选择B.
【点睛】
本题考查圆与外切正六边形性质,等边三角形性质,锐角三角形函数,掌握圆与外切正六边形性质,等边三角形性质,锐角三角形函数是解题关键.
7、C
【解析】
【分析】
根据切线的性质得到∠CDO=90°,求得∠COD=90°-40°=50°,根据等腰三角形的性质和三角形外角的性质即可得到结论.
【详解】
解:∵CD是⊙O的切线,
∴∠CDO=90°,
∵∠C=40°,
∴∠COD=90°-40°=50°,
∵OD=OB,
∴∠B=∠ODB,
∵∠COD=∠B+∠ODB,
∴∠B=∠COD=25°,
故选:C.
【点睛】
本题考查了切线的性质,圆周角定理,三角形外角的性质,等腰三角形的性质,熟练掌握切线的性质是解题的关键.
8、A
【解析】
【分析】
根据点与圆的位置关系得出OP>3即可.
【详解】
解:∵⊙O的半径为3,点P在⊙O外,
∴OP>3,
故选:A.
【点睛】
本题考查点与圆的位置关系,解答的关键是熟知点与圆的位置关系:设平面内的点与圆心的距离为d,圆的半径为r,则点在圆外d>r,点在圆上d=r,点在圆内d<r.
9、C
【解析】
【分析】
先利用待定系数法求出直线的解析式,再把每点代入函数解析式,根据不在同一直线上的三点能确定一个圆即可得出答案.
【详解】
解:设直线的解析式为,
将点代入得:,解得,
则直线的解析式为,
A、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;
B、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;
C、当时,,则此时点在同一直线上,不可以确定一个圆,此项符合题意;
D、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;
故选:C.
【点睛】
本题考查了确定一个圆、求一次函数的解析式,熟练掌握确定一个圆的条件是解题关键.
10、B
【解析】
【分析】
连接DG、AG,作GH⊥AD于H,连接OD,如图,先确定AG=DG,则GH垂直平分AD,则可判断点O在HG上,再根据HG⊥BC可判定BC与圆O相切;接着利用OG=OD可判断圆心O不是AC与BD的交点;然后根据四边形AEFD为⊙O的内接矩形可判断AF与DE的交点是圆O的圆心.
【详解】
解:连接DG、AG,作GH⊥AD于H,连接OD,如图,
∵G是BC的中点,
∴CG=BG,
∵CD=BA,根据勾股定理可得,
∴AG=DG,
∴GH垂直平分AD,
∴点O在HG上,
∵AD∥BC,
∴HG⊥BC,
∴BC与圆O相切;
∵OG=OD,
∴点O不是HG的中点,
∴圆心O不是AC与BD的交点;
∵∠ADF=∠DAE=90°,
∴∠AEF=90°,
∴四边形AEFD为⊙O的内接矩形,
∴AF与DE的交点是圆O的圆心;AE=DF;
∴(1)错误,(2)(3)(4)正确.
故选:B.
【点睛】
本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了矩形的性质和三角形外心.
二、填空题
1、45°##45度
【解析】
【分析】
连接OB、OC,根据正方形的性质得到∠BOC的度数,利用圆周角与圆心角的关系得到答案.
【详解】
解:连接OB、OC,
∵四边形ABCD是正方形,
∴∠BOC=90°,
∴∠BPC=,
故答案为:45°.
【点睛】
此题考查了圆内接正方形的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半,熟记各知识点是解题的关键.
2、
【解析】
【分析】
连接,根据切线的性质以及四边形内角和定理求得,进而根据圆周角定理即可求得∠ACB
【详解】
解:连接,如图,
PA,PB分别与⊙O相切
故答案为:
【点睛】
本题考查了切线的性质,圆周角定理,四边形的内角和,掌握切线的性质是解题的关键.
3、65
【解析】
【分析】
根据切线的性质得到OA⊥AP,根据直角三角形的两锐角互余计算,得到答案.
【详解】
解:∵PA是⊙O的切线,
∴OA⊥AP,
∴,
∵∠APO=25°,
∴,
故答案为:65.
【点睛】
本题考查的是切线的性质、直角三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.
4、或6.
【解析】
【分析】
先求出,分三种情况,利用⊙O的切线的特点构造直角三角形,用三角函数求解即可.
【详解】
解:Rt△ABC中,∠ACB=90°,∠A=30°,
∴∠B=60°,
∵AC = 15 cm,
∴
∴,
∵CD为AB边上中线,
∴,
∴∠BDC=∠BCD=∠B=60°,∠ACD=∠A=30°,
①当⊙O与AB相切时,过点O作OE⊥AB于E,如图1,
在Rt△ODE中,∠BDC=60°,OE=3,
∴,
∴;
∴;
②当⊙O与BC相切时,过O作OE⊥BC,如图2,
在Rt△OCE中,∠BCD=60°,OE=3,
∴
∴;
③当⊙O与AC相切时,过O作OE⊥AC于E,如图3,
在Rt△OCE中,∠ACD=30°,OE=3,
∴,
∴.
故答案为或6.
【点睛】
此题是切线的性质,主要考查了直角三角形的性质,斜边的中线等于斜边的一半,锐角三角函数,解本题的关键是用圆的切线构造直角三角形,借助三角函数来求解.
5、36
【解析】
【分析】
连接OA,OB,OB交AF于J.由正多边形中心角、垂径定理、圆周角定理得出∠AOB=72°,∠BOF=36°,再由等腰三角形的性质得出答案.
【详解】
解:连接OA,OB,OB交AF于J.
∵五边形ABCDE是正五边形,OF⊥BC,
∴,
∴∠AOB=72°,∠BOF=∠AOB=36°,
∴∠AOF=∠AOB +∠BOF=108°,
∵OA=OF,
∴∠OAF=∠OFA==36°
故答案为:36.
【点睛】
本题主要考查了园内正多边形中心角度数、垂径定理和圆周角定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧,垂径定理常与勾股定理以及圆周角定理相结合来解题.正n边形的每个中心角都等于.
三、解答题
1、 (1)见解析
(2)
【解析】
【分析】
(1)连接PC,则∠APC=2∠B,可证PC∥DA,证得PC⊥CD,则结论得证;
(2)连接AC,根据∠B=30°,等腰三角形外角性质∠CPA=2∠B=60°,再证△APC为等边三角形,可求∠DCA=90°-∠ACP=90°-60°=30°,AD=2,∠ADC=90°,利用30°直角三角形性质得出AC=2AD=4,然后根据勾股定理CD=即可.
(1)
连接PC,
∵PC=PB,
∴∠B=∠PCB,
∴∠APC=2∠B,
∵2∠B+∠DAB=180°,
∴∠DAP+∠APC=180°,
∴PC∥DA,
∵∠ADC=90°,
∴∠DCP=90°,
即DC⊥CP,
∴直线CD为⊙P的切线;
(2)
连接AC,
∵∠B=30°,
∴∠CPA=2∠B=60°,
∵AP=CP,∠CPA=60°,
∴△APC为等边三角形,
∵∠DCP=90°,
∴∠DCA=90°-∠ACP=90°-60°=30°,
∵AD=2,∠ADC=90°,
∴AC=2AD=4,
∴CD=.
【点睛】
本题考查切线的判定、平行线判定与性质,勾股定理、等腰三角形性质,外角性质,等边三角形的判定与性质等知识,解题的关键是灵活应用这些知识解决问题.
2、 (1)见解析
(2)
【解析】
【分析】
(1)要证明DE是⊙O的切线,所以连接OD,只要求出∠ODE=90°即可解答;
(2)连接BD,利用Rt△ADB的面积加上弓形面积即可求出阴影部分的面积.
(1)
证明:连接OD,
∵,
∴∠CAD=∠BAD,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠CAD=∠ODA,
∴AE∥OD,
∴∠E+∠ODE=90°,
∵DE⊥AC,
∴∠E=90°,
∴∠ODE=180°﹣∠E=90°,
∵OD是圆O的半径,
∴DE是⊙O的切线;
(2)
连接BD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∵∠ADE=60°,∠E=90°,
∴∠CAD=90°﹣∠ADE=30°,
∴∠DAB=∠CAD=30°,
∴AB=2BD,
∵,
∴
∴BD=2,BA=4,
∴OD=OB=2,
∴△ODB是等边三角形,
∴∠DOB=60°,
∴△ADB的面积=AD•DB
=×2×2
=2,
∵OA=OB,
∴△DOB的面积=△ADB的面积=,
∴阴影部分的面积为:
△ADB的面积+扇形DOB的面积﹣△DOB的面积
=2﹣
=,
∴阴影部分的面积为:.
【点睛】
本题考查了切线的判定与性质,圆周角定理,扇形的面积公式,勾股定理,含30°角的直角三角形,根据题目的已知条件并结合图形,添加适当的辅助线是解题的关键.
3、 (1)见解析
(2)2.4.
【解析】
【分析】
(1)过O作OD⊥AB交AB于点D,先根据角平分线的性质求出DO=CO,再根据切线的判定定理即可得出答案;
(2)设圆O的半径为r,即OC=r,由得BC=3r,由勾股定理求得AD=,AB=3r+根据方程求解即可.
(1)
如图所示:过O作OD⊥AB交AB于点D.
∵OC⊥BC,且BO平分∠ABC,
∴OD=OC,
∵OC是圆O的半径
∴AB与圆O相切.
(2)
设圆O的半径为r,即OC=r,
∵
∴
∴
∵OC⊥BC,且OC是圆O的半径
∴BC是圆O的切线,
又AB是圆O的切线,
∴BD=BC=3r
在中,
∴
∴
在中,
∴
整理得,
解得,,(不合题意,舍去)
∴的半径为2.4
【点睛】
此题主要考查了复杂作图以及切线的判定等知识,正确把握切线的判定定理是解题关键.
4、 (1)BP=2
(2)①4.8;②9.6
【解析】
【分析】
(1)连接PT,由⊙P与AD相切于点T,可得四边形ABPT是矩形,即得PT=AB=4=PE,在Rt△BPE中,用勾股定理即得BP=2;
(2)①由⊙P与CD相切,有PC=PE,设BP=x,则PC=PE=10-x,在Rt△BPE中,由勾股定理得x2+22=(10-x)2,即可解得BP=4.8;②点M在⊙P内的路径为EM,过P作PN⊥EM于N,由EM是△ABQ的中位线,可得四边形BPNE是矩形,即知EN=BP=4.8,故EM=2EN=9.6.
(1)
连接PT,如图:
∵⊙P与AD相切于点T,
∴∠ATP=90°,
∵四边形ABCD是矩形,
∴∠A=∠B=90°,
∴四边形ABPT是矩形,
∴PT=AB=4=PE,
∵E是AB的中点,
∴BE=AB=2,
在Rt△BPE中,;
(2)
①∵⊙P与CD相切,
∴PC=PE,
设BP=x,则PC=PE=10-x,
在Rt△BPE中,BP2+BE2=PE2,
∴x2+22=(10-x)2,
解得x=4.8,
∴BP=4.8;
②点Q从点B出发沿射线BC移动,M是AQ的中点,点M在⊙P内的路径为EM,过P作PN⊥EM于N,如图:
由题可知,EM是△ABQ的中位线,
∴EM∥BQ,
∴∠BEM=90°=∠B,
∵PN⊥EM,
∴∠PNE=90°,EM=2EN,
∴四边形BPNE是矩形,
∴EN=BP=4.8,
∴EM=2EN=9.6.
故答案为:9.6.
【点睛】
本题考查矩形与圆的综合应用,涉及直线和圆相切、勾股定理、动点轨迹等,解题的关键是理解M的轨迹是△ABQ的中位线.
5、 (1)见解析
(2)
【解析】
【分析】
(1)根据切线的判定方法,证出即可;
(2)由勾股定理得,,,在中,根据,结合锐角三角函数求出角,再利用扇形的面积的公式求解即可.
(1)
解:如图,连接OB,
∵AB是的切线,
∴,即,
∵BC是弦,,
∴,
∴,在和中,,
∴,
∴,即,
∴AC是的切线;
(2)
解:在中,
由勾股定理得,,,
在中,,
∴,
∴,
∴,
∴.
【点睛】
本题考查切线的判定和性质,三角形全等的判定及性质、勾股定理、锐角三角函数、扇形的面积公式,解题的关键是掌握切线的判定方法,锐角三角函数的知识求解.
冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品达标测试: 这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品达标测试,共39页。试卷主要包含了以半径为1的圆的内接正三角形,如图,FA等内容,欢迎下载使用。
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀巩固练习: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀巩固练习,共34页。
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂达标检测题: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂达标检测题,共35页。