|试卷下载
搜索
    上传资料 赚现金
    难点详解冀教版九年级数学下册第二十九章直线与圆的位置关系章节训练练习题(无超纲)
    立即下载
    加入资料篮
    难点详解冀教版九年级数学下册第二十九章直线与圆的位置关系章节训练练习题(无超纲)01
    难点详解冀教版九年级数学下册第二十九章直线与圆的位置关系章节训练练习题(无超纲)02
    难点详解冀教版九年级数学下册第二十九章直线与圆的位置关系章节训练练习题(无超纲)03
    还剩25页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中冀教版第29章 直线与圆的位置关系综合与测试优秀同步训练题

    展开
    这是一份初中冀教版第29章 直线与圆的位置关系综合与测试优秀同步训练题,共28页。

    九年级数学下册第二十九章直线与圆的位置关系章节训练

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、若OABC的内心,当时,      

    A.130° B.160° C.100° D.110°

    2、如图,有一个亭子,它的地基是边长为4m的正六边形,则地基的面积为(  )

    A.4m2 B.12m2 C.24m2 D.24m2

    3、如图,若的半径为R,则它的外切正六边形的边长为(      

    A. B. C. D.

    4、如图,相切于点经过的圆心与交于,若,则      

    A. B. C. D.

    5、如图,AB是⊙O的直径,BD与⊙O相切于点B,点C是⊙O上一点,连接AC并延长,交BD于点D,连接OCBC,若∠BOC=50°,则∠D的度数为(  )

    A.50° B.55° C.65° D.75°

    6、已知半圆O的直径AB=8,沿弦EF折叠,当折叠后的圆弧与直径AB相切时,折痕EF的长度m(  )

    A.m=4 B.m=4 C.4≤m≤4 D.4m≤4

    7、已知⊙O的半径等于8,点P在直线l上,圆心O到点P的距离为8,那么直线l与⊙O的位置关系是(  )

    A.相切 B.相交

    C.相离、相切或相离 D.相切或相交

    8、如图,PA的切线,切点为APO的延长线交于点B,若,则的度数为(       ).

    A.20° B.25° C.30° D.40°

    9、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使AGH三点刚好在金属框上,则该金属框的半径是(      

    A. B. C. D.

    10、如图,的切线,是切点,上的点,若,则的度数为(      

    A. B. C. D.

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、已知圆O的半径为10cm,OP=8cm,则点P和圆O的位置关系是________.

    2、如图,过⊙O外一点P,作射线PAPB分别切⊙O于点AB,点C在劣弧AB上,过点C作⊙O的切线分别与PAPB交于点DE.则______度.

    3、在同一平面上,外有一点P到圆上的最大距离是8cm,最小距离为2cm,则的半径为______cm

    4、如图,PAPB是⊙O的切线,AB为切点,∠OAB=30°.则∠APB=________度;

    5、已知边长为2的正三角形,能将其完全覆盖的最小圆的面积为__________.

    三、解答题(5小题,每小题10分,共计50分)

    1、如图,在中,BO平分,交AC于点O,以点O为圆心,OC长为半径画

    (1)求证:AB的切线;

    (2)若,求的半径.

    2、如图,在中,平分,与交于点,垂足为,与交于点,经过三点的交于点

    (1)求证的切线;

    (2)若,求的半径.

    3、如图,在中,平分于点D,点O上,以点O为圆心,为半径的圆恰好经过点D,分别交于点EF

    (1)试判断直线的位置关系,并说明理由;

    (2)若,求阴影部分的面积(结果保留).

    4、如图,PAPB是圆的切线,AB为切点.

    (1)求作:这个圆的圆心O(用尺规作图,保留作图痕迹,不写作法和证明);

    (2)在(1)的条件下,延长AO交射线PBC点,若AC=4,PA=3,请补全图形,并求⊙O的半径.

    5、如图,的切线,点在上,相交于的直径,连接,若

    (1)求证:平分

    (2)当时,求的半径长.

     

    -参考答案-

    一、单选题

    1、A

    【解析】

    【分析】

    由三角形内角和以及内心定义计算即可

    【详解】

    又∵OABC的内心

    OBOC角平分线,

    180°=180°-50°=130°

    故选:A.

    【点睛】

    本题考查了三角形内心的定义,与三角形各边都相切的圆叫做三角形的内切圆.三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.

    2、D

    【解析】

    【分析】

    先根据等边三角形的性质求出△OBC的面积,然后由地基的面积是△OBC的6倍即可得到答案

    【详解】

    解:如图所示,正六边形ABCDEF,连接OBOC,过点OOPBCP

    由题意得:BC=4cm,

    ∵六边形ABCD是正六边形,

    ∴∠BOC=360°÷6=60°,

    又∵OB=OC

    ∴△OBC是等边三角形,

    故选D.

    【点睛】

    本题主要考查了正多边形和圆,等边三角形的性质与判定,勾股定理,熟知正多边形和圆的关系是解题的关键.

    3、B

    【解析】

    【分析】

    如图连结OAOBOG,根据六边形ABCDEF为圆外切正六边形,得出∠AOB=60°△AOB为等边三角形,根据点G为切点,可得OGAB,可得OG平分∠AOB,得出∠AOC=,根据锐角三角函数求解即可.

    【详解】

    解:如图连结OAOBOG

    ∵六边形ABCDEF为圆外切正六边形,

    ∴∠AOB=360°÷6=60°,AOB为等边三角形,

    ∵点G为切点,

    OGAB

    OG平分∠AOB

    ∴∠AOC=

    ∴cos30°=

    故选择B.

    【点睛】

    本题考查圆与外切正六边形性质,等边三角形性质,锐角三角形函数,掌握圆与外切正六边形性质,等边三角形性质,锐角三角形函数是解题关键.

    4、B

    【解析】

    【分析】

    连结CO,根据切线性质相切于点,得出OCBC,根据直角三角形两锐角互余∠COB=90°-∠B=90°-40°=50°,然后利用圆周角定理即可.

    【详解】

    解:连结CO

    相切于点

    OCBC

    ∴∠COB+∠B=90°,

    ∴∠COB=90°-∠B=90°-40°=50°,

    故选B.

    【点睛】

    本题考查圆的切线性质,直角三角形两锐角互余性质,圆周角定理,掌握圆的切线性质,直角三角形两锐角互余性质,圆周角定理是解题关键.

    5、C

    【解析】

    【分析】

    首先证明∠ABD=90°,由∠BOC=50°,根据圆周角定理求出∠A的度数即可解决问题.

    【详解】

    解:∵BD是切线,

    BDAB

    ∴∠ABD=90°,

    ∵∠BOC=50°,

    ∴∠ABOC=25°,

    ∴∠D=90°﹣∠A=65°,

    故选:C.

    【点睛】

    本题考查的是切线的性质、圆周角定理,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.

    6、D

    【解析】

    【分析】

    根据题意作出图形,根据垂径定理可得,设,则,分情况讨论求得最大值与最小值,即可解决问题

    【详解】

    解:如图,

    根据题意,折叠后的弧为为切点,设点所在的圆心,的半径相等,即,连接,设交于点

    根据折叠的性质可得,又则四边形是菱形,且

    ,则

    则当取得最大值时,取得最小值,即取得最小值,

    取得最小值时,取得最大值,

    根据题意,当点于点重合时,四边形是正方形

    此时

    当点与点重合时,此时最小,

    故选D

    【点睛】

    本题考查了垂径定理,切线的性质,折叠的性质,勾股定理,分别求得的最大值与最小值是解题的关键.

    7、D

    【解析】

    【分析】

    根据垂线段最短,则点O到直线l的距离≤5,则直线l与⊙O的位置关系是相切或相交.

    【详解】

    解:的半径为8,

    到直线的距离

    直线的位置关系是相切或相交.

    故选:D.

    【点睛】

    此题要特别注意OP不一定是点到直线的距离.判断点和直线的位置关系,必须比较点到直线的距离和圆的半径之间的大小关系.

    8、B

    【解析】

    【分析】

    连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.

    【详解】

    解:连接OA,如图,

    PA是⊙O的切线,

    OAAP

    ∴∠PAO=90°,

    ∵∠P=40°,

    ∴∠AOP=50°,

    OA=OB

    ∴∠B=∠OAB

    ∵∠AOP=∠B+∠OAB

    ∴∠B=∠AOP=×50°=25°.

    故选:B

    【点睛】

    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.

    9、A

    【解析】

    【分析】

    如图,记过AGH三点的圆为的垂直平分线的交点,的交点为 的交点为 延长的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.

    【详解】

    解:如图,记过AGH三点的圆为的垂直平分线的交点,

    的交点为 的交点为 延长的垂直平分线,结合正方形的性质可得:

    四边形为正方形,则

    AB=2,CD=3,EF=5,结合正方形的性质可得:

    解得:

    故选A

    【点睛】

    本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过AGH三点的圆的圆心是解本题的关键.

    10、A

    【解析】

    【分析】

    如图,连接先求解 再利用圆周角定理可得,从而可得答案.

    【详解】

    解:如图,连接

    的切线,

    故选A

    【点睛】

    本题考查的是三角形的内角和定理,四边形的内角和定理,圆周角定理的应用,圆的切线的性质的应用,理解是解本题的关键.

    二、填空题

    1、点P在圆内

    【解析】

    【分析】

    要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系,设点与圆心的距离d,则dr时,点在圆外;当d=r时,点在圆上;当dr时,点在圆内.

    【详解】

    解:∵点P到圆心的距离OP=8cm,小于⊙O的半径10cm

    ∴点P在圆内.

    故答案为:点P在圆内.

    【点睛】

    本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当dr时,点在圆外;当d=r时,点在圆上,当dr时,点在圆内.

    2、65

    【解析】

    【分析】

    连接OAOCOB,根据四边形内角和可得,依据切线的性质及角平分线的判定定理可得DO平分EO平分,再由各角之间的数量关系可得,根据等量代换可得,代入求解即可.

    【详解】

    解:如图所示:连接OAOCOB

    PAPBDE与圆相切于点ABE

    DO平分EO平分

    故答案为:65.

    【点睛】

    题目主要考查圆的切线的性质,角平分线的判定和性质,四边形内角和等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.

    3、5或3##3或5

    【解析】

    【分析】

    分点P在圆内或圆外进行讨论.

    【详解】

    解:①当点P在圆内时,⊙O的直径长为8+2=10(cm),半径为5cm;

    ②当点P在圆外时,⊙O的直径长为8-2=6(cm),半径为3cm;

    综上所述:⊙O的半径长为 5cm或3cm.

    故答案为:5或3.

    【点睛】

    本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.

    4、60

    【解析】

    【分析】

    先根据圆的切线的性质可得,从而可得,再根据切线长定理可得,然后根据等边三角形的判定与性质即可得.

    【详解】

    解:的切线,

    是等边三角形,

    故答案为:60.

    【点睛】

    本题考查了圆的切线的性质、切线长定理等知识点,熟练掌握圆的切线的性质是解题关键.

    5、##

    三、解答题

    1、 (1)见解析

    (2)2.4.

    【解析】

    【分析】

    (1)过OODABAB于点D,先根据角平分线的性质求出DO=CO,再根据切线的判定定理即可得出答案;

    (2)设圆O的半径为r,即OC=r,由BC=3r,由勾股定理求得AD=AB=3r+根据方程求解即可.

    (1)

    如图所示:过OODABAB于点D

    OCBC,且BO平分∠ABC

    OD=OC

    OC是圆O的半径

    AB与圆O相切.

    (2)

    设圆O的半径为r,即OC=r

    OCBC,且OC是圆O的半径

    BC是圆O的切线,

    AB是圆O的切线,

    BD=BC=3r

    中,

    中,

    整理得,

    解得,(不合题意,舍去)

    的半径为2.4

    【点睛】

    此题主要考查了复杂作图以及切线的判定等知识,正确把握切线的判定定理是解题关键.

    2、 (1)见解析

    (2)

    【解析】

    【分析】

    (1)连接,利用角平分线的定义和等腰三角形的性质可证,从而,得到,根据切线的判定方法可证的切线;

    (2)证明,利用相似三角形的性质可求的半径.

    (1)

    证明:连接

    是直径,的中点.

    平分

    又∵

    又∵经过半径的外端,

    的切线.

    (2)

    解:∵

    中,

    中,

    .

    设半径为,则

    的半径为

    【点睛】

    本题考查了切线的判定,等腰三角形的性质,平行线的判定与性质,以及相似三角形的判定与性质,掌握切线的判定方法是解(1)的关键,掌握相似三角形的判定与性质是解(2)的关键.

    3、 (1)BC与⊙O相切,理由见详解

    (2)

    【解析】

    【分析】

    (1)根据题意先证明ODAC,即可证得∠ODB=90°,从而证得BC是圆的切线;

    (2)由题意直接根据三角形和扇形的面积公式进行计算即可得到结论.

    (1)

    解: BC与⊙O相切.

    证明:∵AD是∠BAC的平分线,

    ∴∠BAD=∠CAD

    又∵OD=OA

    ∴∠OAD=∠ODA

    ∴∠CAD=∠ODA

    ODAC

    ∴∠ODB=∠C=90°,即ODBC

    又∵BC过半径OD的外端点D

    BC与⊙O相切;

    (2)

    ,∠ODB=90°,

    RtOBD中,

    由勾股定理得:

    SOBD= ODBD= S扇形ODF=

    ∴阴影部分的面积=

    【点睛】

    本题考查切线的判定和扇形面积以及勾股定理,熟练掌握切线的判定是解答本题的关键.

    4、 (1)见解析;

    (2)见解析,的半径为

    【解析】

    【分析】

    (1)过点BBP的垂线,作∠APB的平分线,二线的交点就是圆心;

    (2)根据切线的性质,利用勾股定理,建立一元一次方程求解即可.

    (1)

    如图所示,点O即为所求

    (2)

    如图,∵PA是圆的切线,AO是半径,PB是圆的切线,

    ∴∠CAP=90°,PA=PB=3,∠CBO=90°,

    AC=4,

    PC==5,BC=5-3=2,

    设圆的半径为x,则OC=4-x

    解得x=

    故圆的半径为

    【点睛】

    本题考查了垂线的画法,角的平分线的画法,切线的性质,切线长定理,勾股定理,一元一次方程的解法,熟练掌握切线的性质,切线长定理和勾股定理是解题的关键.

    5、 (1)见解析

    (2)的半径长为

    【解析】

    【分析】

    (1)根据切线的性质,可得,由平行线的性质,等边对等角,等量代换即可得,进而得证;

    (2)连接,根据直径所对的圆周角是直角,勾股定理求得,证明列出比例式,代入数值求解可得,进而求得半径

    (1)

    证明:如图,连接

    的切线,

    ,即平分

    (2)

    解:如图,连接

    中,

    由勾股定理得:

    的直径,

    ,即

    解得:

    的半径长为

    【点睛】

    本题考查了切线的性质,直径所对的圆周角是直角,相似三角形的性质与判定,勾股定理,掌握圆的相关知识以及相似三角形的是解题的关键.

     

    相关试卷

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课时作业: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课时作业,共36页。

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品复习练习题: 这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品复习练习题,共38页。试卷主要包含了已知M,下面四个结论正确的是等内容,欢迎下载使用。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀练习题: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀练习题,共33页。试卷主要包含了如图,,如图,将的圆周分成五等分等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map