开学活动
搜索
    上传资料 赚现金

    2021-2022学年度强化训练冀教版九年级数学下册第三十章二次函数章节测评试卷(含答案解析)

    2021-2022学年度强化训练冀教版九年级数学下册第三十章二次函数章节测评试卷(含答案解析)第1页
    2021-2022学年度强化训练冀教版九年级数学下册第三十章二次函数章节测评试卷(含答案解析)第2页
    2021-2022学年度强化训练冀教版九年级数学下册第三十章二次函数章节测评试卷(含答案解析)第3页
    还剩30页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版九年级下册第30章 二次函数综合与测试精品精练

    展开

    这是一份冀教版九年级下册第30章 二次函数综合与测试精品精练,共33页。
    九年级数学下册第三十章二次函数章节测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、二次函数y=ax2+bx+c的图像全部在x轴的上方,下列判断中正确的是( )
    A.a<0,c<0 B.a<0,c>0 C.a>0,c<0 D.a>0,c>0
    2、某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率,第3年的销售量为台,则关于的函数解析式为( )
    A. B.
    C. D.
    3、下列函数中,随的增大而减小的函数是( )
    A. B. C. D.
    4、2020年2月3日,随着南立交匝道最后一条交通线划线完毕,蒙山大道祊河桥迎来了南北东西方向全线通车,蒙山高架路“踏实落地”,市民从此可一路畅通.蒙山大道祊河桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )

    A. B. C. D.
    5、二次函数的图象如图所示,则下列结论正确的是( )

    A.,, B.,, C.,, D.,,
    6、将二次函数y=2x2的图像先向左平移2个单位,再向上平移3个单位,得到的函数图像的表达式为(  )
    A.y=2(x+2)2+3 B.y=2(x-2)2+3 C.y=2(x+2)2-3 D.y=2(x-2)2-3
    7、一个球从地面竖直向上弹起时的速度为8米/秒,经过秒时球的高度为米,和满足公式:h=v0t-12gt2v0表示球弹起时的速度,表示重力系数,取米/秒,则球不低于3米的持续时间是( )
    A.秒 B.秒 C.秒 D.1秒
    8、将关于x的二次函数的图像向上平移1单位,得到的抛物线经过三点、、,则、、的大小关系是( )
    A. B. C. D.
    9、已知二次函数的图象上有三点,,,则、、的大小关系为( )
    A. B. C. D.
    10、下列函数中,二次函数是( )
    A.y=﹣3x+5 B.y=x(4x﹣3)
    C.y=2(x+4)2﹣2x2 D.y=
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、某工厂今年八月份医用防护服的产量是50万件,计划九月份和十月份增加产量,如果月平均增长率为x,那么十月份医用防护服的产量y(万件)与x之间的函数表达式为______.
    2、已知二次函数,当时,函数的值是_________.
    3、抛物线y=x2+2x+的对称轴是直线______.
    4、某商品进价为26元,当每件售价为50元时,每天能售出40件,经市场调查发现每件售价每降低1元,则每天可多售出2件,当店里每天的利润要达到最大时,店主应把该商品每件售价降低______元.
    5、请写出一个开口向下,与轴交点的纵坐标为3的抛物线的函数表达式__.
    三、解答题(5小题,每小题10分,共计50分)
    1、某政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,月销售量(件)与销售单价(元)之间的关系可看作一次函数:,已知当销售单价定为25元时,李明每月获得利润为1250元.
    (1)求的值;
    (2)当销售单价定为多少元时,每月可获得最大利润?并求最大利润是多少?
    (注:利润=(销售单价-进价)×销售量)
    2、某科技有限公司成功研制出一种市场急需的电子产品,已于当年投入生产并进行销售,已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图,其中AB段为反比例函数图像的一部分,设公司销售这种电子产品的年利润为w(万元).

    (1)请求出y(万件)与x(元/件)之间的函数关系式;
    ①求出当4≤x≤8时的函数关系式;
    ②求出当8<x≤28时的函数关系式.
    (2)求出这种电子产品的年利润w(万元)与x(元/件)之间的函数关系式;
    (3)求出年利润的最大值.
    3、如图,Rt中,.点P从点A出发,沿射线方向以每秒1个单位长度的速度向终点B运动,当点P不与点A重合时,将线段绕点P旋转使(点在点P右侧),过点作交射线于点M,设点P运动的时间为t(秒).

    (1)的长为___________(用含t的代数式表示)
    (2)当落在的角平分线上时,求此时t的值.
    (3)设与重叠部分图形的面积为S(平方单位),求S关于t的函数关系式.并求当t为何值时,S有最大值,最大值为多少?
    4、阅读理解,并完成相应的问题.
    如图,重庆轨道2号线是中国西部地区第一条城市轨道交通线路,也是中国第一条跨座式单轨线路,因其列车在李子坝站穿楼而过闻名全国.小军了解到列车从牛角沱站开往李子坝站时,在距离停车线256米处开始减速.他想知道列车从减速开始,经过多少秒停下来,以及最后一秒滑行的距离.为了解决这个问题,小军通过建立函数模型来描述列车离停车线的距离s(米)与滑行时间t(秒)的函数关系,再应用该函数解决相应的问题.

    (1)建立模型
    ①收集数据:
    r(秒)
    0
    4
    8
    12
    16
    20
    24
    ……
    s(米)
    256
    196
    144
    100
    64
    36
    16
    ……
    ②建立平面直角坐标系为了观察s(米)与t(秒)的关系,建立如图所示的平面直角坐标系.
    ③描点连线:请在平面直角坐标系中将表中未描出的点补充完整,并用平滑的曲线依次连接.
    ④选择函数模型:观察这条曲线的形状,它可能是_______函数的图象.
    ⑤求函数解析式;
    解:设,因为时,,所以,则.
    请根据表格中的数据,求a,b的值.(请写出详细解答过程).

    验证:把a,b的值代入中,并将其余几对值代入求出的解析式,发现它们_______满足该函数解析式.(填“都”或“不都”)
    结论:减速阶段列车离停车线的距离s(米)与减速时间t(秒)的函数关系式为__________.
    (2)应用模型
    列车从减速开始经过_______秒,列车停止;最后一秒钟,列车滑行的距离为_______米.
    5、如图,在平面直角坐标系中,抛物线与x轴交于B,C两点(C在B的左侧),与y轴交于点A,已知,.

    (1)求抛物线的表达式;
    (2)若点Q是线段AC下方抛物线上一点,过点Q作QD垂直AC交AC于点D,求DQ的最大值及此时点Q的坐标;
    (3)点E是线段AB上一点,且;将抛物线沿射线AB的方向平移,当抛物线恰好经过点E时,停止运动,已知点M是平移后抛物线对称轴上的动点,N是平面直角坐标系中一点,直接写出所有使得以点A,B,M,N为顶点的四边形是菱形的点N的坐标,并把求其中一个点N的坐标的过程写出来.

    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    由抛物线全部在轴的上方,即可得出抛物线与轴无交点且,进而即可得出、,此题得解.
    【详解】
    解:二次函数的图象全部在轴的上方,
    ,,



    ,.
    故选:D.
    【点睛】
    本题考查了二次函数的性质,解题的关键是牢记二次函数的性质.
    2、B
    【解析】
    【分析】
    根据增长率问题的计算公式解答.
    【详解】
    解:第2年的销售量为,
    第3年的销售量为,
    故选:B.
    【点睛】
    此题考查了增长率问题的计算公式,a是前量,b是后量,x是增长率,熟记公式中各字母的意义是解题的关键.
    3、B
    【解析】
    【分析】
    根据一次函数,反比例函数,二次函数,正比例函数的性质逐项分析即可.
    【详解】
    A. ,,随的增大而增大,故A选项不符合题意.
    B. ,, ,的图像位于第三象限,随的增大而减小,故B选项符合题意;
    C. ,,对称轴为轴,在对称轴的左边,随的增大而增大,在对称轴的右边,随的增大而减小,故C选项不符合题意;
    D. ,,随的增大而增大,故D选项不符合题意;
    故选B.
    【点睛】
    本题考查了一次函数,反比例函数,二次函数,正比例函数的性质,掌握以上性质是解题的关键.
    4、B
    【解析】
    【分析】
    直接利用图象设出抛物线解析式,进而得出答案.
    【详解】
    ∵拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,
    ∴设抛物线解析式为y=ax2,点B(45,-78),
    ∴-78=452a,
    解得:a=,
    ∴此抛物线钢拱的函数表达式为,
    故选:B.
    【点睛】
    本题主要考查了二次函数的应用,正确设出抛物线解析式是解题关键.
    5、D
    【解析】
    【分析】
    首先根据二次函数图象的开口方向确定,再根据对称轴在轴右,可确定与异号,然后再根据二次函数与轴的交点可以确定.
    【详解】
    解:抛物线开口向上,

    对称轴在轴右侧,
    与异号,

    抛物线与轴交于正半轴,

    故选:.
    【点睛】
    此题主要考查了二次函数图象与系数的关系,关键是掌握二次函数,
    ①二次项系数决定抛物线的开口方向和大小.
    当时,抛物线向上开口;当时,抛物线向下开口.
    ②一次项系数和二次项系数共同决定对称轴的位置.
    当与同号时(即,对称轴在轴左; 当与异号时(即,对称轴在轴右.(简称:左同右异)
    ③.常数项决定抛物线与轴交点. 抛物线与轴交于.
    6、A
    【解析】
    【分析】
    按照“左加右减,上加下减”的规律,即可得出平移后抛物线的解析式.
    【详解】
    解:抛物线y=2x2先向左平移2个单位得到解析式:y=2(x+2)2,再向上平移3个单位得到抛物线的解析式为:y=2(x+2)2+3.
    故选:A.
    【点睛】
    本题考查了二次函数图象与几何变换,掌握抛物线解析式的变化规律:左加右减,上加下减是解题的关键.
    7、A
    【解析】
    【分析】
    根据已知得到函数关系式,将h=3代入,求出t值的差即为答案.
    【详解】
    解:由题意得,
    当h=3时,,
    解得,
    ∴球不低于3米的持续时间是1-0.6=0.4(秒),
    故选:A.
    【点睛】
    此题考查了二次函数的实际应用,解一元二次方程,正确理解题中各字母的值,代入求出函数解析式解决问题是解题的关键.
    8、C
    【解析】
    【分析】
    根据题意求得平移后的二次函数的对称轴以及开口方向,根据三个点与对称轴的距离大小判断函数值的大小即可
    【详解】
    解:∵关于x的二次函数的图像向上平移1单位,得到的抛物线解析式为,
    ∴新抛物线的对称轴为,开口方向向上,则当抛物线上的点距离对称轴越远,其纵坐标越大,即函数值越大,
    平移后的抛物线经过三点、、,


    故选C
    【点睛】
    本题考查了二次函数的平移,二次函数的性质,二次函数的对称轴直线x=,图象具有如下性质:①当a>0时,抛物线的开口向上,x<时,y随x的增大而减小;x>时,y随x的增大而增大;x=时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线的开口向下,x<时,y随x的增大而增大;x>时,y随x的增大而减小;x=时,y取得最大值,即顶点是抛物线的最高点,掌握二次函数的性质是解题的关键.
    9、A
    【解析】
    【分析】
    分别求出、、的大小,再进行判断即可.
    【详解】
    解:




    A、故选项正确,符合题意;
    B、故选项错误,不符合题意;
    C、故选项错误,不符合题意;
    D、故选项错误,不符合题意.
    故选:A.
    【点睛】
    此题考查了二次函数的大小比较问题,解题的关键是掌握二次函数的性质、利用代入法求出、、的大小.
    10、B
    【解析】
    【分析】
    根据二次函数的定义逐个判断即可.
    【详解】
    解:A.函数是一次函数,不是二次函数,故本选项不符合题意;
    B.是二次函数,故本选项符合题意;
    C.是一次函数,不是二次函数,故本选项不符合题意;
    D.不是二次函数,故本选项不符合题意;
    故选:B.
    【点睛】
    本题考查了二次函数的定义,解题的关键是掌握:形如、、为常数,的函数,叫二次函数.
    二、填空题
    1、
    【解析】
    【分析】
    某工厂今年八月份医用防护服的产量是50万件,月平均增长率为x,则九月份的产量为万件,十月份医用防护服的产量为万件,从而可得答案.
    【详解】
    解:十月份医用防护服的产量y(万件)与x之间的函数表达式为

    故答案为:
    【点睛】
    本题考查的是列二次函数关系式,掌握“两次变化后的量=原来量(1+增长率)2”是解本题的关键.
    2、-1
    【解析】
    【分析】
    将x的值代入计算即可;
    【详解】
    解:当时
    ==-1
    故答案为:-1
    【点睛】
    本题考查了二次函数的值,正确计算是解题的关键.
    3、x=﹣1
    【解析】
    【分析】
    抛物线的对称轴方程为: 利用公式直接计算即可.
    【详解】
    解:抛物线y=x2+2x+的对称轴是直线:

    故答案为:
    【点睛】
    本题考查的是抛物线的对称轴方程,掌握“抛物线的对称轴方程的公式”是解本题的关键.
    4、2
    【解析】
    【分析】
    设每件商品售价降低元,则每天的利润为:,然后求解计算最大值即可.
    【详解】
    解:设每件商品售价降低元
    则每天的利润为:,




    ∴当时,最大为968元
    故答案为2.
    【点睛】
    本题考查了一元二次函数的应用.解题的关键在于确定函数解析式.
    5、
    【解析】
    【分析】
    首先根据开口向下得到二次项系数小于0,然后根据与轴的交点坐标的纵坐标为3得到值即可得到函数的解析式.
    【详解】
    解:开口向下,
    中,
    与轴的交点纵坐标为3,

    抛物线的解析式可以为:(答案不唯一).
    故答案为:(答案不唯一).
    【点睛】
    本题考查了二次函数的性质,解题的关键是熟知二次函数中各项系数的作用.
    三、解答题
    1、 (1)的值是500;
    (2)当销售单价定为35元时,每月可获得最大利润,最大利润是2250元
    【解析】
    【分析】
    (1)根据利润=(销售单价-进价)×销售量列方程求解即可;
    (2)根据利润=(销售单价-进价)×销售量得到w关于x的二次函数关系式,利用二次函数的性质求解即可.
    (1)
    解:由题意可得,,
    解得:,
    答:的值是500;
    (2)
    解:设利润为w元,
    由题意:,

    ∵-10

    相关试卷

    初中数学冀教版九年级下册第30章 二次函数综合与测试精品随堂练习题:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试精品随堂练习题,共33页。

    初中数学冀教版九年级下册第30章 二次函数综合与测试优秀随堂练习题:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试优秀随堂练习题,共31页。试卷主要包含了抛物线的顶点坐标为等内容,欢迎下载使用。

    初中第30章 二次函数综合与测试精品当堂检测题:

    这是一份初中第30章 二次函数综合与测试精品当堂检测题,共34页。试卷主要包含了若二次函数y=ax2+bx+c等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map