终身会员
搜索
    上传资料 赚现金

    2021-2022学年度冀教版九年级数学下册第三十章二次函数综合测试试卷(无超纲带解析)

    立即下载
    加入资料篮
    2021-2022学年度冀教版九年级数学下册第三十章二次函数综合测试试卷(无超纲带解析)第1页
    2021-2022学年度冀教版九年级数学下册第三十章二次函数综合测试试卷(无超纲带解析)第2页
    2021-2022学年度冀教版九年级数学下册第三十章二次函数综合测试试卷(无超纲带解析)第3页
    还剩32页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第30章 二次函数综合与测试精品同步训练题

    展开

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试精品同步训练题,共35页。试卷主要包含了根据表格对应值等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数综合测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、若二次函数y=a(x+b)2+c(a≠0)的图象,经过平移后可与y=(x+3)2的图象完全重合,则a,b,c的值可能为( )
    A.a=1,b=0,c=﹣2 B.a=2,b=6,c=0
    C.a=﹣1,b=﹣3,c=0 D.a=﹣2,b=﹣3,c=﹣2
    2、已知二次函数的图象如图所示,根据图中提供的信息,可求得使成立的x的取值范围是( )

    A. B. C. D.或
    3、将抛物线的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过( )
    A. B. C. D.
    4、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )

    A.米 B.10米 C.米 D.12米
    5、已知二次项系数等于1的一个二次函数,其图象与x轴交于,两点,且过,两点.若,则ab的取值范围为( )
    A. B. C. D.
    6、根据表格对应值:
    x
    1.1
    1.2
    1.3
    1.4
    ax2+bx+c
    ﹣0.59
    0.84
    2.29
    3.76
    判断关于x的方程ax2+bx+c=2的一个解x的范围是( )
    A.1.1<x<1.2 B.1.2<x<1.3 C.1.3<x<1.4 D.无法判定
    7、一次函数与二次函数在同一平面直角坐标系中的图象可能是(  )
    A. B.
    C. D.
    8、如图,在中,,,,是边上一动点,沿的路径移动,过点作,垂足为.设,的面积为,则下列能大致反映与函数关系的图象是( )

    A. B.
    C. D.
    9、小明以二次函数的图象为灵感为“2017北京房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若,,则杯子的高为( )

    A.14 B.11 C.6 D.3
    10、若点A(-1,y1),B(0,y2),C(1,y3)都在二次函数y=2x2+x-1的图象上,则y1,y2,y3的大小关系是( )
    A.y1<y2><y3 B.y2<y1<y3 C.y3<y1<y2 D.y3<y2<y1
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、若将二次函数y=x2﹣2x+3配方为y=(x﹣h)2+k的形式,则y=___________.
    2、如图,院子里有块直角三角形空地ABC,∠C=90°.直角边AC=3m、BC=4m,现准备修一个如图所示的矩形DEFG的养鱼池,当矩形DEFG面积最大时,EF的长为 _____.

    3、如图,函数的图象过点和,下列判断:
    ①;
    ②;
    ③;
    ④和处的函数值相等.
    其中正确的是__(只填序号).

    4、如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,若点P(2023,m)在某段抛物线上,则m=_____.

    5、如图,平面直角坐标系中,以点C(2,)为圆心,以2为半径的圆与x轴交于A,B两点.若二次函数y=x2+bx+c的图象经过点A,B,试确定此二次函数的解析式为 ____________.

    三、解答题(5小题,每小题10分,共计50分)
    1、在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=a+bx+1恰好经过A,B,C三点中的两点.
    (1)判断点B是否在直线y=x+m上,并说明理由;
    (2)求a,b的值;
    (3)平移抛物线y=a+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.
    2、阅读理解,并完成相应的问题.
    如图,重庆轨道2号线是中国西部地区第一条城市轨道交通线路,也是中国第一条跨座式单轨线路,因其列车在李子坝站穿楼而过闻名全国.小军了解到列车从牛角沱站开往李子坝站时,在距离停车线256米处开始减速.他想知道列车从减速开始,经过多少秒停下来,以及最后一秒滑行的距离.为了解决这个问题,小军通过建立函数模型来描述列车离停车线的距离s(米)与滑行时间t(秒)的函数关系,再应用该函数解决相应的问题.

    (1)建立模型
    ①收集数据:
    r(秒)
    0
    4
    8
    12
    16
    20
    24
    ……
    s(米)
    256
    196
    144
    100
    64
    36
    16
    ……
    ②建立平面直角坐标系为了观察s(米)与t(秒)的关系,建立如图所示的平面直角坐标系.
    ③描点连线:请在平面直角坐标系中将表中未描出的点补充完整,并用平滑的曲线依次连接.
    ④选择函数模型:观察这条曲线的形状,它可能是_______函数的图象.
    ⑤求函数解析式;
    解:设,因为时,,所以,则.
    请根据表格中的数据,求a,b的值.(请写出详细解答过程).

    验证:把a,b的值代入中,并将其余几对值代入求出的解析式,发现它们_______满足该函数解析式.(填“都”或“不都”)
    结论:减速阶段列车离停车线的距离s(米)与减速时间t(秒)的函数关系式为__________.
    (2)应用模型
    列车从减速开始经过_______秒,列车停止;最后一秒钟,列车滑行的距离为_______米.
    3、如图,在平面直角坐标系中,抛物线与x轴交于B,C两点(C在B的左侧),与y轴交于点A,已知,.

    (1)求抛物线的表达式;
    (2)若点Q是线段AC下方抛物线上一点,过点Q作QD垂直AC交AC于点D,求DQ的最大值及此时点Q的坐标;
    (3)点E是线段AB上一点,且;将抛物线沿射线AB的方向平移,当抛物线恰好经过点E时,停止运动,已知点M是平移后抛物线对称轴上的动点,N是平面直角坐标系中一点,直接写出所有使得以点A,B,M,N为顶点的四边形是菱形的点N的坐标,并把求其中一个点N的坐标的过程写出来.
    4、已知函数(为常数).
    (1)若图象经过点,判断图象经过点吗?请说明理由;
    (2)设该函数图象的顶点坐标为,当的值变化时,求与的关系式;
    (3)若该函数图象不经过第三象限,当时,函数的最大值与最小值之差为16,求的值.
    5、已知一抛物线的顶点为(2,4),图象过点(1,3).
    (1)求抛物线的解析式;
    (2)动点P(x,5)能否在抛物线上?请说明理由;
    (3)若点A(a,y1),B(b,y2)都在抛物线上,且a<b<0,比较y1,y2的大小,并说明理由.

    -参考答案-
    一、单选题
    1、A
    【解析】
    【分析】
    根据二次函数的平移性质得出a不发生变化,即可判断a=1.
    【详解】
    解:∵二次函数y=a(x+b)2+c的图形,经过平移后可与y=(x+3)2的图形完全叠合,
    ∴a=1.
    故选:A.
    【点睛】
    此题主要考查了二次函数的平移性质,根据已知得出a的值不变是解题关键.
    2、D
    【解析】
    【分析】
    根据函数图象写出y=1对应的自变量x的值,再根据判断范围即可.
    【详解】
    由图可知,使得时
    使成立的x的取值范围是或
    故选:D.
    【点睛】
    本题考查了二次函数与不等式,准确识图是解题的关键.
    3、B
    【解析】
    【分析】
    由题意知,平移后的抛物线解析式为,将各选项中的横坐标代入,求出纵坐标并与各选项的纵坐标比较,纵坐标相同的即为正确答案.
    【详解】
    解:由题意知,平移后的抛物线解析式为
    将代入解析式得,与A中点坐标不同,故不符合要求;
    将代入解析式得,与B中点坐标相同,故符合要求;
    将代入解析式得,与C中点坐标不同,故不符合要求;
    将代入解析式得,与D中点坐标不同,故不符合要求;
    故选B.
    【点睛】
    本题考查了二次函数图象的平移.解题的关键在于写出平移后的二次函数解析式.
    4、B
    【解析】
    【分析】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
    【详解】

    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
    设抛物线的解析式为y=ax2,
    ∵O点到水面AB的距离为4米,
    ∴A、B点的纵坐标为-4,
    ∵水面AB宽为20米,
    ∴A(-10,-4),B(10,-4),
    将A代入y=ax2,
    -4=100a,
    ∴,
    ∴,
    ∵水位上升3米就达到警戒水位CD,
    ∴C点的纵坐标为-1,

    ∴x=±5,
    ∴CD=10,
    故选:B.
    【点睛】
    本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
    5、D
    【解析】
    【分析】
    由题意可设抛物线为y=(x-m)(x-n),则,再利用二次函数的性质可得答案.
    【详解】
    解:由已知二次项系数等于1的一个二次函数,
    其图象与x轴交于两点(m,0),(n,0),
    所以可设交点式y=(x-m)(x-n),
    分别代入,,



    ∵0<m<n<3,
    ∴0<≤4 ,0<≤4 ,
    ∵m<n,
    ∴ab不能取16 ,
    ∴0<ab<16 ,
    故选D
    【点睛】
    本题考查的是二次函数的图象与性质,根据二次函数的性质得到是解本题的关键.
    6、B
    【解析】
    【分析】
    利用表中数据可知当x=1.3和x=1.2时,代数式ax2+bx+c的值一个大于2,一个小于2,从而判断当1.2<x<1.3时,代数式ax2+bx+c的值为2.
    【详解】
    解:当x=1.3时,ax2+bx+c=2.29,
    当x=1.2时,ax2+bx+c=0.84,
    ∵0.84<2<2.29,
    ∴方程解的范围为1.2<x<1.3,
    故选:B
    【点睛】
    本题考查估算一元二次方程的近似解,解题关键是观察函数值的变化情况.
    7、C
    【解析】
    【分析】
    逐一分析四个选项,根据二次函数图象的开口以及对称轴与y轴的关系即可得出a、b的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.
    【详解】
    A、∵二次函数图象开口向下,对称轴在y轴左侧,
    ∴a<0,b<0,
    ∴一次函数图象应该过第二、三、四象限,A不可能;
    B、∵二次函数图象开口向上,对称轴在y轴右侧,
    ∴a>0,b<0,
    ∴一次函数图象应该过第一、三、四象限,B不可能;
    C、∵二次函数图象开口向下,对称轴在y轴左侧,
    ∴a<0,b<0,
    ∴一次函数图象应该过第二、三、四象限,C可能;
    D、∵二次函数图象开口向下,对称轴在y轴左侧,
    ∴a<0,b<0,
    ∴一次函数图象应该过第二、三、四象限,D不可能.
    故选:C.
    【点睛】
    本题考查了二次函数的图象以及一次函数图象与系数的关系,解题的关键是根据a、b的正负确定一次函数图象经过的象限.
    8、D
    【解析】
    【分析】
    分两种情况分类讨论:当0≤x≤6.4时,过C点作CH⊥AB于H,利用△ADE∽△ACB得出y与x的函数关系的图象为开口向上的抛物线的一部分;当6.4<x≤10时,利用△BDE∽△BCA得出y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.
    【详解】
    解:∵,,,
    ∴BC=,
    过CA点作CH⊥AB于H,
    ∴∠ADE=∠ACB=90°,
    ∵,
    ∴CH=4.8,
    ∴AH=,
    当0≤x≤6.4时,如图1,

    ∵∠A=∠A,∠ADE=∠ACB=90°,
    ∴△ADE∽△ACB,
    ∴,即,解得:x=,
    ∴y=•x•=x2;
    当6.4<x≤10时,如图2,

    ∵∠B=∠B,∠BDE=∠ACB=90°,
    ∴△BDE∽△BCA,
    ∴,
    即,解得:x=,
    ∴y=•x•=;
    故选:D.
    【点睛】
    本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用分类讨论的思想求出y与x的函数关系式.
    9、B
    【解析】
    【分析】
    首先由y=2x2-4x+8求出D点的坐标为(1,6),然后根据AB=4,可知B点的横坐标为x=3,代入y=2x2-4x+8,得到y=14,所以CD=14-6=8,又DE=3,所以可知杯子高度.
    【详解】
    解:,
    抛物线顶点的坐标为,

    点的横坐标为,
    把代入,得到,


    故选:B.
    【点睛】
    本题主要考查了二次函数的应用,求出顶点D和点B的坐标是解决问题的关键.
    10、B
    【解析】
    【分析】
    由题意可知函数图象的对称轴、增减性;根据对称将A转化到对称轴的右侧,得到的坐标表示,然后比较三点横坐标的大小,进而判断三点纵坐标的大小即可.
    【详解】
    解:由知该函数图象开口向上,对称轴是直线,在对称轴的右侧,y随x的增加而增大
    ∴点A对称的点的坐标为


    故选B.
    【点睛】
    本题考查了二次函数的图象与性质.解题的关键在于掌握该函数图象与性质.
    二、填空题
    1、
    【解析】
    【分析】
    利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.
    【详解】
    y=x2﹣2x+3=(x2﹣2x+1)+2=(x﹣1)2+2
    故本题答案为:y=(x﹣1)2+2.
    【点睛】
    本题考查了把二次函数的一般式化为顶点式,关键是配方法的运用.
    2、##
    【解析】
    【分析】
    过点作,交于点,等面积法求得,设,进而根据得出比例式,根据矩形的面积为,得到关于的二次函数,根据二次函数的性质即可求得面积最大时的的值,进而求得的长.
    【详解】
    解:如图,过点作,交于点,

    ∠C=90°.直角边AC=3m、BC=4m,


    设,则
    四边形是矩形





    整理得
    设矩形的面积为,则
    当取得最大值时,,此时
    故答案为:
    【点睛】
    本题考查了矩形的性质,勾股定理,相似三角形的性质与判定,二次函数的性质,掌握以上知识是解题的关键.
    3、①③④
    【解析】
    【分析】
    根据抛物线开口方向,对称轴以及与轴的交点即可判断①;根据、的符号得出,即可得到,根据时,得到,即可得到,即可判断②;根据抛物线与一元二次方程的关系即可判断③;根据抛物线的对称性即可判断④.
    【详解】
    解:抛物线开口向下,

    抛物线交轴于正半轴,



    ,故①正确,
    ,,


    时,,则,

    ,故②错误,
    的图象过点和,
    方程的根为,,
    方程的根为,

    ,故③正确;
    的图象过点和,
    抛物线的对称轴为直线,

    和处的函数值相等,故④正确,
    故答案为:①③④.
    【点睛】
    本题考查了二次函数图象与系数的关系:对于二次函数,二次项系数决定抛物线的开口方向:当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当与同号时(即,对称轴在轴左;当与异号时(即,对称轴在轴右;常数项决定抛物线与轴交点:抛物线与轴交于;△决定抛物线与轴交点个数:△时,抛物线与轴有2个交点;△时,抛物线与轴有1个交点;△时,抛物线与轴没有交点.
    4、﹣1
    【解析】
    【分析】
    将这段抛物线C1通过配方法求出顶点坐标及抛物线与x轴的交点,由旋转的性质可以知道C1与C2的顶点到x轴的距离相等,且OA1=A1A2,照此类推可以推导知道点P(2023,m)为抛物线C1012的顶点,从而得到结果.
    【详解】
    解:∵y=﹣x(x﹣2)(0≤x≤2),
    ∴配方可得y=﹣(x﹣1)2+1(0≤x≤2),
    ∴顶点坐标为(1,1),
    ∴A1坐标为(2,0)
    ∵C2由C1旋转得到,
    ∴OA1=A1A2,即C2顶点坐标为(3,﹣1),A2(4,0);
    照此类推可得,C3顶点坐标为(5,1),A3(6,0);
    C4顶点坐标为(7,﹣1),A4(8,0);
    C5顶点坐标为(9,1),A5(10,0);

    C1012顶点坐标为(2023,﹣1),A1012(2024,0);
    ∴m=﹣1.
    故答案为:﹣1.
    【点睛】
    本题考查了二次函数的性质及旋转的性质,解题的关键是求出抛物线的顶点坐标.
    5、y=x2-4x+3
    【解析】
    【分析】
    过点C作CH⊥AB于点H,然后利用垂径定理求出CH、AH和BH的长度,进而得到点A和点B的坐标,再将A、B的坐标代入函数解析式求得b与c,最后求得二次函数的解析式.
    【详解】
    解:过点C作CH⊥AB于点H,则AH=BH,

    ∵C(2,),
    ∴CH=,
    ∵半径为2,
    ∴AH=BH==1,
    ∵A(1,0),B(3,0),
    ∴二次函数的解析式为y=(x﹣1)(x﹣3)=x2﹣4x+3,
    故答案为:y=x2-4x+3.
    【点睛】
    本题考查了圆的垂径定理、二次函数的解析式,解题的关键是过点C作CH⊥AB于点H,利用垂径定理求出点A和点B的坐标.
    三、解答题
    1、 (1)在,见解析
    (2)a=﹣1,b=2
    (3)当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为
    【解析】
    【分析】
    (1)根据待定系数法求得直线的解析式,然后即可判断点B(2,3)在直线y=x+m上;
    (2)因为直线经过A、B和点(0,1),所以经过点(0,1)的抛物线不同时经过A、B点,即可判断抛物线只能经过A、C两点,根据待定系数法即可求得a、b;
    (3)设平移后的抛物线为y=﹣+px+q,其顶点坐标为(,),根据题意得出=,由抛物线y=﹣+px+q与y轴交点的纵坐标为q,即可得出q=-=,从而得出q的最大值.
    (1)
    点B是在直线y=x+m上,理由如下:
    ∵直线y=x+m经过点A(1,2),
    ∴2=1+m,解得m=1,
    ∴直线为y=x+1,
    把x=2代入y=x+1得y=3,
    ∴点B(2,3)在直线y=x+m上;
    (2)
    ∵直线y=x+1与抛物线y=ax2+bx+1都经过点(0,1),且B、C两点的横坐标相同,
    ∴抛物线只能经过A、C两点,
    把A(1,2),C(2,1)代入y=a+bx+1得,
    解得a=﹣1,b=2;
    (3)
    由(2)知,抛物线为y=﹣+2x+1,
    设平移后的抛物线为y=﹣+px+q,
    ∴顶点坐标为(,),
    ∵其顶点仍在直线y=x+1上,
    ∴=,
    ∴q=-=,
    ∴当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为.
    【点睛】
    本题考查了图像与点的关系,待定系数法确定函数解析式,配方法求二次函数最值,熟练掌握待定系数法,灵活配方求最值是解题的关键.
    2、 (1)二次, 都, s=
    (2)32,0.25
    【解析】
    【分析】
    (1)通过描点、连线,观察图形可知,图象可能是二次函数的函数的图象;将点(4,196),(8,144)代入s=at2+bt+256,得a、b的值,再将其余几对值代入求出的解析式,发现它们都满足该函数解析式,最后得到结论:减速阶段列车离停车线的距离s(米)与减速时间t(秒)的函数关系式;
    (2)让s=0,可求出列车从减速开始到列车停止的时间,然后将t=31代入s=t2-16t+256,即可求最后一秒钟,列车滑行的距离.
    (1)
    解:描点连线如下图:

    由这条曲线的形状可知,它可能是二次函数的函数的图象;
    设s=at2+bt+c(a≠0),因为t=0时,s=256,所以c=256,则s=at2+bt+256,将点(4,196),(8,144)代入s=at2+bt+256,得:

    解这个方程组得:,
    ∴s=t2-16t+256,
    当t=12时,×122-16×12+256=100,
    当t=16时,×162-16×16+256=64,
    当t=20时,×202-16×20+256=36,
    当t=24时,×242-16×24+256=16,
    ∴其余几对值代入求出的解析式,发现它们都满足该函数解析式,
    ∴结论:减速阶段列车离停车线的距离s(米)与减速时间t(秒)的函数关系式为s=t2-16t+256(t≥0);
    (2)
    ∵列车停止,
    ∴s=0,
    ∴t2-16t+256=0,
    解这个方程得:t=32,
    ∴列车从减速开始经过32秒,列车停止;
    ∴最后一秒钟时31秒,
    当t=31时,×312-16×31+256=0.25,
    ∴最后一秒钟,列车滑行的距离为0.25米.
    【点睛】
    本题考查了二次函数的性质,二元一次方程组的解法、一元二次方程的解法,做题的关键是确定二次函数的解析式.
    3、 (1)
    (2)DQ的最大值为,
    (3)N点坐标为或或或,见解析
    【解析】
    【分析】
    (1)根据在抛物线上,可得,再由,可得,即可求解;
    (2)过点Q作轴交直线AC于点P,令 ,可得,从而得到,进而得到,,再求出直线AC解析式,然后设,则,可得,即可求解;
    (3)先求出平移后的抛物线为.然后分四种情况讨论,即可求解.
    (1)
    解:∵在抛物线上,
    ∴,

    ∴,
    将代入中得,,
    ∴抛物线的表达式为:;
    (2)
    解:过点Q作轴交直线AC于点P,如图:

    当 时,,
    解得: ,
    ∴,即OC=4,
    ∵OA=4,
    ∴,
    ∴,
    在Rt△PQD中,,
    由、得直线AC解析式为:,
    设,则,



    ∴当时,DQ的最大值为,此时.
    (3)
    解:存在,N点坐标为或或或.
    设平移后满足条件的抛物线为;
    ∵抛物线过点,∴
    ∴抛物线沿射线AB的方向平移,设抛物线沿直线平移,
    ∴抛物线与抛物线的的顶点均在直线上;
    ∴由直线过点得,,解得;
    由直线过得,,则,
    又∵,∴,
    ∴,或(因为对称轴在不满足沿射线AB平移,舍去)
    ∴,,平移后的抛物线为.
    ∴对称轴为y轴,
    即点M在y轴上,
    当四边形ABNM为菱形,点N在x轴的上方时,

    ∵,.
    ∴;
    当四边形ABN1M1为菱形,点N在x轴的下方时,
    ∵,.
    ∴;
    当四边形AB M2 N2为菱形时,点N2在x轴上,则A M2垂直平分B N2,
    ∴O N2=OB,
    ∴点N2;
    当四边形A M3B N3为菱形,A M3=B M3,.
    设O M3=a,则B M3=A M3=4-a,
    ∴ ,解得: ,
    ∴ ,
    ∴点N3;
    综上所述,N点坐标为或或或.
    【点睛】
    本题主要考查了二次函数的图象和性质,与四边形的综合题,抛物线的平移,熟练掌握二次函数的图象和性质,菱形的性质是解题的关键.
    4、 (1)经过,理由见解析
    (2)n=﹣m2﹣6m.
    (3)4或6
    【解析】
    【分析】
    (1)把点(﹣2,4)代入y=x2+bx+3b中,即可得到函数表达式,然后把点(2,4)代入判断即可;
    (2)利用顶点坐标公式得到﹣=m,=n,然后消去b可得到n与m的关系式.
    (3)由抛物线不经过第三象限可得b的取值范围,分别讨论x=﹣6与x=1时y为最大值求解.
    (1)
    解:经过,
    把点(﹣2,4)代入y=x2+bx+3b中得:
    4﹣2b+3b=4,
    解得b=0,
    ∴此函数表达式为:y=x2,
    当x=2时,y=4,
    ∴图象经过点(2,4);
    (2)
    解:∵抛物线函数y=x2+bx+3b(b为常数)的顶点坐标是 (m,n),
    ∴﹣=m,=n,
    ∴b=﹣2m,
    把b=﹣2m代入=n得n==﹣m2﹣6m.
    即n关于m的函数解析式为n=﹣m2﹣6m.
    (3)
    把x=0代入y=x2+bx+3b得y=3b,
    ∵抛物线不经过第三象限,
    ∴3b≥0,即b≥0,
    ∵y=x2+bx+3b=(x+)2﹣+3b,
    ∴抛物线顶点(﹣,﹣+3b),
    ∵﹣≤0,
    ∴当﹣+3b≥0时,抛物线不经过第三象限,
    解得b≤12,
    ∴0≤b≤12,﹣6≤﹣≤0,
    ∴当﹣6≤x≤1时,函数最小值为y=﹣+3b,
    把x=﹣6代入y=x2+bx+3b得y=36﹣3b,
    把x=1代入y=x2+bx+3b得y=1+4b,
    当36﹣3b﹣(﹣+3b)=16时,
    解得b=20(不符合题意,舍去)或b=4.
    当1+4b﹣(﹣+3b)=16时,
    解得b=6或b=﹣10(不符合题意,舍去).
    综上所述,b=4或6.
    【点睛】
    本题考查二次函数的综合应用,解题关键是掌握二次函数的性质,掌握二次函数与方程的关系,通过分类讨论求解.
    5、 (1)
    (2)不在,见解析
    (3)y1<y2,见解析
    【解析】
    【分析】
    (1)根据已知条件设抛物线的解析式为顶点式,把点(1,3)的坐标代入所设的解析式中即可求得a,从而可求得函数解析式;
    (2)把点P的纵坐标代入抛物线的解析式中,得到关于x的二元一次方程,若方程有解,则点P在抛物线,否则不在抛物线上;
    (3)抛物线的对称轴为直线x=2,根据抛物线的增减性质即可比较大小.
    (1)
    设抛物线的解析式为
    把点(1,3)的坐标代入中,得a+4=3

    即抛物线的解析式为;
    (2)
    动点P(x,5)不在抛物线上
    理由如下:
    在中,当y=5时,得

    此方程无解
    故点P不在抛物线上;
    (3)
    y1<y2
    理由如下:
    抛物线的对称轴为直线x=2
    ∵二次项系数−1

    相关试卷

    冀教版九年级下册第30章 二次函数综合与测试精品随堂练习题:

    这是一份冀教版九年级下册第30章 二次函数综合与测试精品随堂练习题,共32页。试卷主要包含了抛物线y=42+3的顶点坐标是等内容,欢迎下载使用。

    初中数学第30章 二次函数综合与测试精品课堂检测:

    这是一份初中数学第30章 二次函数综合与测试精品课堂检测,共30页。试卷主要包含了二次函数y=a+bx+c,抛物线的对称轴是,对于抛物线下列说法正确的是等内容,欢迎下载使用。

    数学九年级下册第30章 二次函数综合与测试精品练习:

    这是一份数学九年级下册第30章 二次函数综合与测试精品练习,共23页。试卷主要包含了下列函数中,随的增大而减小的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map