终身会员
搜索
    上传资料 赚现金

    2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专项攻克试题(含解析)

    立即下载
    加入资料篮
    2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专项攻克试题(含解析)第1页
    2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专项攻克试题(含解析)第2页
    2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专项攻克试题(含解析)第3页
    还剩30页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂达标检测题

    展开

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂达标检测题,共33页。
    九年级数学下册第二十九章直线与圆的位置关系专项攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是( )

    A.6 B. C.3 D.
    2、直角三角形的外接圆半径为3,内切圆半径为1,则该直角三角形的周长是( )
    A.12 B.14 C.16 D.18
    3、如图,⊙O是正五边形ABCDE的外接圆,点P是的一点,则∠CPD的度数是(  )

    A.30° B.36° C.45° D.72°
    4、如图,面积为18的正方形ABCD内接于⊙O,则⊙O的半径为( )

    A. B.
    C.3 D.
    5、如图,有一个亭子,它的地基是边长为4m的正六边形,则地基的面积为(  )

    A.4m2 B.12m2 C.24m2 D.24m2
    6、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )

    A. B. C. D.
    7、已知半径为5的圆,直线l上一点到圆心的距离是5,则直线和圆的位置关系为( )
    A.相切 B.相离 C.相切或相交 D.相切或相离
    8、如图,△ABC周长为20cm,BC=6cm,圆O是△ABC的内切圆,圆O的切线MN与AB、CA相交于点M、N,则△AMN的周长为( )

    A.14cm B.8cm C.7cm D.9cm
    9、如图,BD是⊙O的切线,∠BCE=30°,则∠D=(  )

    A.40° B.50° C.60° D.30°
    10、已知⊙O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系是( )
    A.相离 B.相切 C.相交 D.相交或相切
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、斛是中国古代的一种量器.据《汉书 .律历志》记载:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆” . 如图所示,
    问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为________尺.

    2、如图,在中,,,,是内切圆,则的半径为______.

    3、下面给出了用三角尺画一个圆的切线的步骤示意图,但顺序需要进行调整,正确的画图步骤是________.

    4、如图,点,,均在的正方形网格格点上,过,,三点的外接圆除经过,,三点外还能经过的格点数为_________.

    5、已知正多边形的半径与边长相等,那么正多边形的边数是______.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,四边形OAEC是平行四边形,以O为圆心,OC为半径的圆交CE于D,延长CO交O于B,连接AD、AB,AB是O的切线.

    (1)求证:AD是O的切线.
    (2)若O的半径为4,,求平行四边形OAEC的面积.
    2、如图,在中,,⊙O是的外接圆,过点C作,交⊙O于点D,连接AD交BC于点E,延长DC至点F,使,连接AF.

    (1)求证:;
    (2)求证:AF是⊙O的切线.
    3、【提出问题】如图①,已知直线l与⊙O相离,在⊙O上找一点M,使点M到直线l的距离最短.

    (1)小明给出下列解答,请你补全小明的解答.
    小明的解答
    过点O作ON⊥l,垂足为N,ON与⊙O的交点M即为所求,此时线段MN最短.
    理由:不妨在⊙O上另外任取一点P,过点P作PQ⊥l,垂足为Q,连接OP,OQ.
    ∵OP+PQ>OQ,OQ>ON,
    ∴ .
    又ON=OM+MN;
    ∴OP+PQ>OM+MN.
    又 ,
    ∴ .
    (2)【操作实践】如图②,已知直线l和直线外一点A,线段MN的长度为1.请用直尺和圆规作出满足条件的某一个⊙O,使⊙O经过点A,且⊙O上的点到直线l的距离的最小值为1.(不写作法,保留作图痕迹并用水笔加黑描粗)
    (3)【应用尝试】如图③,在Rt△ABC中,∠C=90,∠B=30,AB=8,⊙O经过点A,且⊙O上的点到直线BC的距离的最小值为2,距离最小值为2时所对应的⊙O上的点记为点P,若点P在△ABC的内部(不包括边界),则⊙O的半径r的取值范围是 .
    4、如图,已知AB是⊙P的直径,点在⊙P上,为⊙P外一点,且∠ADC=90°,2∠B+∠DAB=180°

    (1)试说明:直线为⊙P的切线.
    (2)若∠B=30°,AD=2,求CD的长.
    5、如图,在平面直角坐标系中,,的半径为1.如果将线段绕原点逆时针旋转后的对应线段所在的直线与相切,且切点在线段上,那么线段就是⊙C 的“关联线段”,其中满足题意的最小就是线段与的“关联角”.

    (1)如图1,如果线段是的“关联线段”,那么它的“关联角”为______.
    (2)如图2,如果、、、、、.那么的“关联线段”有______(填序号,可多选).
    ①线段;②线段;③线段
    (3)如图3,如果、,线段是的“关联线段”,那么的取值范围是______.
    (4)如图4,如果点的横坐标为,且存在以为端点,长度为的线段是的“关联线段”,那么的取值范围是______.

    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    如图所示,设圆的圆心为O,连接OC,OB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明Rt△OCA≌Rt△OBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为.
    【详解】
    解:如图所示,设圆的圆心为O,连接OC,OB,
    ∵AC,AB都是圆O的切线,
    ∴∠OCA=∠OBA=90°,OC=OB,
    又∵OA=OA,
    ∴Rt△OCA≌Rt△OBA(HL),
    ∴∠OAC=∠OAB,
    ∵∠DAC=60°,
    ∴,
    ∴∠AOB=30°,
    ∴OA=2AB=6,
    ∴,
    ∴圆O的直径为,
    故选D.

    【点睛】
    本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.
    2、B
    【解析】
    【分析】
    ⊙I切AB于E,切BC于F,切AC于D,连接IE,IF,ID,得出正方形CDIF推出CD=CF=1,根据切线长定理得出AD=AE,BE=BF,CF=CD,求出AD+BF=AE+BE=AB=6,即可求出答案.
    【详解】
    解:如图,⊙I切AB于E,切BC于F,切AC于D,连接IE,IF,ID,
    则∠CDI=∠C=∠CFI=90°,ID=IF=1,
    ∴四边形CDIF是正方形,
    ∴CD=CF=1,
    由切线长定理得:AD=AE,BE=BF,CF=CD,
    ∵直角三角形的外接圆半径为3,内切圆半径为1,
    ∴AB=6=AE+BE=BF+AD,
    即△ABC的周长是AC+BC+AB=AD+CD+CF+BF+AB=6+1+1+6=14,
    故选:B.

    【点睛】
    本题考查了直角三角形的外接圆与内切圆,正方形的性质和判定,切线的性质,切线长定理等知识点的综合运用.
    3、B
    【解析】
    【分析】
    连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题;
    【详解】
    解:如图,连接OC,OD.

    ∵五边形ABCDE是正五边形,
    ∴∠COD==72°,
    ∴∠CPD=∠COD=36°,
    故选:B
    【点睛】
    本题主要考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    4、C
    【解析】
    【分析】
    连接OA、OB,则为等腰直角三角形,由正方形面积为18,可求边长为,进而通过勾股定理,可得半径为3.
    【详解】
    解:如图,连接OA,OB,则OA=OB,

    ∵四边形ABCD是正方形,
    ∴,
    ∴是等腰直角三角形,
    ∵正方形ABCD的面积是18,
    ∴,
    ∴,即:

    故选C.
    【点睛】
    本题考查了正多边形和圆、正方形的性质等知识,构造等腰直角三角形是解题的关键.
    5、D
    【解析】
    【分析】
    先根据等边三角形的性质求出△OBC的面积,然后由地基的面积是△OBC的6倍即可得到答案
    【详解】
    解:如图所示,正六边形ABCDEF,连接OB,OC,过点O作OP⊥BC于P,
    由题意得:BC=4cm,
    ∵六边形ABCD是正六边形,
    ∴∠BOC=360°÷6=60°,
    又∵OB=OC,
    ∴△OBC是等边三角形,
    ∴,,
    ∴,
    ∴,
    ∴,
    故选D.

    【点睛】
    本题主要考查了正多边形和圆,等边三角形的性质与判定,勾股定理,熟知正多边形和圆的关系是解题的关键.
    6、B
    【解析】
    【分析】
    如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.
    【详解】
    解:如图:连接OB,

    ∵是的切线,B为切点
    ∴∠OBA=90°

    ∴∠COB=90°-42°=48°
    ∴=∠COB=24°.
    故选B.
    【点睛】
    本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.
    7、C
    【解析】
    【分析】
    根据若直线上一点到圆心的距离等于圆的半径,则圆心到直线的距离等于或小于圆的半径,此时直线和圆相交或相切.
    【详解】
    解:∵半径为5的圆,直线l上一点到圆心的距离是5,
    ∴圆心到直线的距离等于或小于5,
    ∴直线和圆的位置关系为相交或相切,
    故选:C.
    【点睛】
    本题考查了直线和圆的位置关系,判断的依据是半径和直线到圆心的距离的大小关系:设⊙O的半径为r,圆心O到直线l的距离为d,①直线l和⊙O相交⇔d<r;②直线l和⊙O相切⇔d=r;③直线l和⊙O相离⇔d>r.
    8、B
    【解析】
    【分析】
    根据切线长定理得到BF=BE,CF=CD,DN=NG,EM=GM,AD=AE,然后利用三角形的周长和BC的长求得AE和AD的长,从而求得△AMN的周长.
    【详解】
    解:∵圆O是△ABC的内切圆,圆O的切线MN与AB、CA相交于点M、N,
    ∴BF=BE,CF=CD,DN=NG,EM=GM,AD=AE,
    ∵△ABC周长为20cm,BC=6cm,
    ∴AE=AD====4(cm),
    ∴△AMN的周长为AM+MG+NG+AN=AM+ME+AN+ND=AE+AD=4+4=8(cm),
    故选:B.

    【点睛】
    本题考查三角形的内切圆与内心及切线的性质的知识,解题的关键是利用切线长定理求得AE和AD的长,难度不大.
    9、D
    【解析】
    【分析】
    连接,根据同弧所对的圆周角相等,等角对等边,三角形的外角性质可得,根据切线的性质可得,根据直角三角形的两个锐角互余即可求得.
    【详解】
    解:连接






    BD是⊙O的切线


    故选D
    【点睛】
    本题考查了切线的性质,等弧所对的圆周角相等,直角三角形的两锐角互余,掌握切线的性质是解题的关键.
    10、B
    【解析】
    【分析】
    圆的半径为 圆心O到直线l的距离为 当时,直线与圆相切,当时,直线与圆相离,当时,直线与圆相交,根据原理直接作答即可.
    【详解】
    解: ⊙O的直径为10cm,圆心O到直线l的距离为5cm,
    ⊙O的半径等于圆心O到直线l的距离,
    直线l与⊙O的位置关系为相切,
    故选B
    【点睛】
    本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.
    二、填空题
    1、
    【解析】
    【分析】
    如图,根据四边形CDEF为正方形,可得∠D=90°,CD=DE,从而得到CE是直径,∠ECD=45°,然后利用勾股定理,即可求解.
    【详解】
    解:如图,

    ∵四边形CDEF为正方形,
    ∴∠D=90°,CD=DE,
    ∴CE是直径,∠ECD=45°,
    根据题意得:AB=2.5, ,
    ∴ ,
    ∴ ,
    即此斛底面的正方形的边长为 尺.
    故答案为:
    【点睛】
    本题主要考查了圆内接四边形,勾股定理,熟练掌握圆内接四边形的性质,勾股定理是解题的关键.
    2、1
    【解析】
    【分析】
    根据三角形内切圆与内心的性质和三角形面积公式解答即可.
    【详解】
    解:∵∠C=90°,AC=3,AB=5,
    ∴BC==4,
    如图,分别连接OA、OB、OC、OD、OE、OF,

    ∵⊙O是△ABC内切圆,D、E、F为切点,
    ∴OD⊥BC,OE⊥AC,OF⊥AB于D、E、F,OD=OE=OF,
    ∴S△ABC=S△BOC+S△AOC+S△AOB=BC•DO+AC•OE+AB•FO=(BC+AC+AB)•OD,
    ∵∠ACB=90°,
    ∴,
    ∴.
    故答案为:1.
    【点睛】
    此题考查三角形内切圆与内心,勾股定理,熟练掌握三角形内切圆的性质是解答本题的关键.
    3、②③④①
    【解析】
    【分析】
    先根据直径所对的圆周角是直角确定圆的一条直径,然后根据圆的一条切线与切点所在的直径垂直,进行求解即可.
    【详解】
    解:第一步:先根据直径所对的圆周角是直角,确定圆的一条直径与圆的交点,即图②,
    第二步:画出圆的一条直径,即画图③;
    第三边:根据切线的判定可知,圆的一条切线与切点所在的直径垂直,确定切点的位置从而画出切线,即先图④再图①,
    故答案为:②③④①.
    【点睛】
    本题主要考查了直径所对的圆周角是直角,切线的判定,熟知相关知识是解题的关键.
    4、5
    【解析】
    【分析】
    根据圆的确定方法做出过A,B,C三点的外接圆,从而得出答案.
    【详解】
    如图,分别作AB、BC的中垂线,两直线的交点为O,

    以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,
    由图可知,⊙O还经过点D、E、F、G、H这5个格点,
    故答案为5.
    【点睛】
    此题考查了确定圆的方法,三角形的外接圆,解题的关键是根据题意确定三角形ABC外接圆的圆心.
    5、六
    【解析】
    【分析】
    设这个正多边形的边数为n,根据题意可知OA=OB=AB,则△OAB是等边三角形,得到∠AOB=60°,则,由此即可得到答案.
    【详解】
    解:设这个正多边形的边数为n,
    ∵正多边形的半径与边长相等,
    ∴OA=OB=AB,
    ∴△OAB是等边三角形,
    ∴∠AOB=60°,
    ∴,
    ∴,
    ∴正多边形的边数是六,
    故答案为:六.

    【点睛】
    本题主要考查了正多边形和圆,等边三角形的性质与判定,熟知相关知识是解题的关键.
    三、解答题
    1、 (1)见解析
    (2)32
    【解析】
    【分析】
    (1)连接OD,证明,可得,根据切线的性质可得,进而可得,即可证明AD是O的切线;
    (2)根据平行四边形OAEC的面积等于2倍即可求解.
    (1)
    证明:连接OD.

    ∵四边形OAEC是平行四边形,
    ∴,




    又∵,

    ∴,
    ∵AB与相切于点B,


    ∴,

    又∵OD是的半径,
    ∴AD为的切线.
    (2)


    在Rt△AOD中,
    ∴平行四边形OABC的面积是
    【点睛】
    本题考查了切线的性质与判定,平行四边形的性质,三角形全等的性质与判定,掌握切线的性质与判定是解题的关键.
    2、 (1)见解析;
    (2)见解析
    【解析】
    【分析】
    (1)由AB=AC知∠ABC=∠ACB,结合∠ACB=∠BCD,∠ABC=∠ADC得∠BCD=∠ADC,从而得证;
    (2)连接OA,由∠CAF=∠CFA知∠ACD=∠CAF+∠CFA=2∠CAF,结合∠ACB=∠BCD得∠ACD=2∠ACB,∠CAF=∠ACB,据此可知AF∥BC,从而得OA⊥AF,从而得证.
    (1)
    解:∵,
    ∴,
    又∵,
    ∴,
    ∴ ;
    (2)
    解:如图,连接OA,

    ∵,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵已知,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴AF为⊙O的切线.
    【点睛】
    本题考查了圆周角定理、垂径定理推论、切线的判定、平行线的判定和性质,熟练掌握切线的判定定理是解题的关键.
    3、 (1)OP+PQ>ON; OP=OM;PQ>MN
    (2)见解析
    (3)1<r<4
    【解析】
    【分析】
    (1)利用两点之间线段最短解答即可;
    (2)过点A作l的线AB,截取BC=MN,以AC为直径作⊙O;
    (3)作AC的垂直平分线,交AC于F,交AB于E,以AF为直径作圆,过点A和点E作⊙O′,使⊙O′切EF于E,求出⊙O和⊙O′的半径,从而求出半径r的范围.
    (1)
    理由:不妨在⊙O上另外任取一点P,过点P作PQ⊥l,垂足为Q,连接OP,OQ.
    ∵OP+PQ>OQ,OQ>ON,
    ∴OP+PQ>ON.
    又ON=OM+MN;
    ∴OP+PQ>OM+MN.
    又 OP=OM,
    ∴PQ>MN.
    故答案为:OP+PQ>ON, OP=OM,PQ>MN;
    (2)
    解:如图,

    ⊙O是求作的图形;
    (3)
    (3)如图2,

    作AC的垂直平分线,交AC于F,交AB于E,以AF为直径作圆,过点A和点E作⊙O′,使⊙O′切EF于E,
    ∴∠FEO′=∠AFE=90°,
    ∴AF∥EO′,
    ∴∠AEO′=∠BAC=60°,
    ∵AO′=EO′,
    ∴△ADO′是等边三角形,
    ∴AE=AO′,
    ∵AB=8,∠B=30°,
    ∴AC=AB=4,
    ∴AF=2,
    ∴⊙O的半径是1,
    ∴AE=AB=4,
    ∴1<r<4,
    故答案是:1<r<4.
    【点睛】
    本题考查了与圆的有关位置,等边三角形判定和性质,尺规作图等知识,解决问题的关键是找出临界位置,作出图形.
    4、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)连接PC,则∠APC=2∠B,可证PC∥DA,证得PC⊥CD,则结论得证;
    (2)连接AC,根据∠B=30°,等腰三角形外角性质∠CPA=2∠B=60°,再证△APC为等边三角形,可求∠DCA=90°-∠ACP=90°-60°=30°,AD=2,∠ADC=90°,利用30°直角三角形性质得出AC=2AD=4,然后根据勾股定理CD=即可.
    (1)
    连接PC,
    ∵PC=PB,
    ∴∠B=∠PCB,
    ∴∠APC=2∠B,
    ∵2∠B+∠DAB=180°,
    ∴∠DAP+∠APC=180°,
    ∴PC∥DA,
    ∵∠ADC=90°,
    ∴∠DCP=90°,
    即DC⊥CP,
    ∴直线CD为⊙P的切线;

    (2)
    连接AC,
    ∵∠B=30°,
    ∴∠CPA=2∠B=60°,
    ∵AP=CP,∠CPA=60°,
    ∴△APC为等边三角形,
    ∵∠DCP=90°,
    ∴∠DCA=90°-∠ACP=90°-60°=30°,
    ∵AD=2,∠ADC=90°,
    ∴AC=2AD=4,
    ∴CD=.
    【点睛】
    本题考查切线的判定、平行线判定与性质,勾股定理、等腰三角形性质,外角性质,等边三角形的判定与性质等知识,解题的关键是灵活应用这些知识解决问题.
    5、 (1)
    (2)②,③
    (3)
    (4)
    【解析】
    【分析】
    (1)作OD与相切,此时所得最小,根据切线的性质可得,再由含角的直角三角形的特殊性质可得,再由勾股定理可得OD长度,判断切点在OD上即可得
    (2)根据勾股定理求出各点与原点的距离与最长切线距离比较即可得;
    (3)线段BD绕点O的旋转路线的半径为1的上,当OD与相切时,由(1)可得:,根据题意即可确定t的取值范围,得出线段BD是的“关联线段”;
    (4)当m取最大值时,M点运动最小半径是O到过点的直线l的距离m,根据题意可得,得出,即为m的最大值;当m取最小值时,作出相应图形,根据题意可得,再由,及点M所在位置,即可确定m的最小值,综合即可得.
    (1)
    解:如图所示:作OD与相切,

    ∴,
    ∵,,
    ∴,
    ∴,
    ∴此时的角度最小,且,
    ∴切点在线段OD上,
    ∴OA的关联角为;
    (2)
    解:如图所示:连接,,,,

    ∵,,
    ∴,
    ∴切点不在线段上,不是的“关联线段”;
    ∵,,
    ∴,,
    ∵,
    ∴是的“关联线段”;
    ∵,
    ∴是的“关联线段”;
    (3)
    解:,,线段BD绕点O的旋转路线的半径为1的上,

    当OD与相切时,
    由(1)可得:,
    ∴当时,线段BD是的“关联线段”,
    故答案为:;
    (4)
    解:如图所示:当m取最大值时,

    M点运动最小半径是O到过点的直线l的距离是m,
    ∵,,
    ∴,
    ∴,
    ∴m的最大值为4,
    如图所示:当m取小值时,

    开始时存在ME与相切,
    ∵,,
    ∴,
    ∵,及点M所在位置,
    ∴,
    综上可得:,
    故答案为:.
    【点睛】
    题目主要考查直线与圆的位置关系,线段旋转的性质,勾股定理解三角形等,理解题意,作出相应图象是解题关键.

    相关试卷

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课后复习题:

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课后复习题,共30页。试卷主要包含了如图所示,在的网格中,A等内容,欢迎下载使用。

    数学九年级下册第29章 直线与圆的位置关系综合与测试课时作业:

    这是一份数学九年级下册第29章 直线与圆的位置关系综合与测试课时作业,共31页。试卷主要包含了将一把直尺等内容,欢迎下载使用。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试复习练习题:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试复习练习题,共28页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map