终身会员
搜索
    上传资料 赚现金
    难点详解冀教版九年级数学下册第二十九章直线与圆的位置关系章节测评试卷(含答案详解)
    立即下载
    加入资料篮
    难点详解冀教版九年级数学下册第二十九章直线与圆的位置关系章节测评试卷(含答案详解)01
    难点详解冀教版九年级数学下册第二十九章直线与圆的位置关系章节测评试卷(含答案详解)02
    难点详解冀教版九年级数学下册第二十九章直线与圆的位置关系章节测评试卷(含答案详解)03
    还剩32页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂达标检测题

    展开
    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂达标检测题,共35页。

    九年级数学下册第二十九章直线与圆的位置关系章节测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知是正六边形的外接圆,正六边形的边心距为,将图中阴影部分的扇形围成一个圆锥的侧面,则该圆锥的底面圆的半径为( )

    A.1 B. C. D.
    2、如图,有一个亭子,它的地基是边长为4m的正六边形,则地基的面积为(  )

    A.4m2 B.12m2 C.24m2 D.24m2
    3、如图,与相切于点,经过的圆心与交于,若,则( )

    A. B. C. D.
    4、如图,若的半径为R,则它的外切正六边形的边长为( )

    A. B. C. D.
    5、在同一平面内,有一半径为6的⊙O和直线m,直线m上有一点P,且OP=4;则直线m与⊙O的位置关系是 ( )
    A.相交 B.相离 C.相切 D.不能确定
    6、如图,在矩形ABCD中,,,点O在对角线BD上,以OB为半径作交BC于点E,连接DE;若DE是的切线,此时的半径为( )

    A. B. C. D.
    7、如图,在平面直角坐标系中,直线分别与轴、轴相交于点、,点、分别是正方形的边、上的动点,且,过原点作,垂足为,连接、,则面积的最大值为( )

    A. B.12 C. D.
    8、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是( )
    A.OP>4 B.0≤OP<4 C.OP>2 D.0≤OP<2
    9、如图,在矩形ABCD中,点E在CD边上,连接AE,将沿AE翻折,使点D落在BC边的点F处,连接AF,在AF上取点O,以O为圆心,线段OF的长为半径作⊙O,⊙O与AB,AE分别相切于点G,H,连接FG,GH.则下列结论错误的是( )

    A. B.四边形EFGH是菱形
    C. D.
    10、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是( )

    A.6 B. C.3 D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,AB是半圆O的弦,DE是直径,过点B的切线BC与⊙O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则∠BDC的度数为______.

    2、已知⊙O的半径为10,直线AB与⊙O相切,则圆心O到直线AB的距离为______.
    3、如图,已知PA、PB是⊙O的两条切线,点A、点B为切点,线段OP交⊙O于点M.下列结论:①PA=PB;②OP⊥AB;③四边形OAPB有外接圆;④点M是△AOP外接圆的圆心.其中正确的结论是_____(填序号).

    4、是的内接正六边形一边,点是优弧上的一点(点不与点,重合)且,与交于点,则的度数为_______.

    5、如图,AB,BC,CD分别与⊙O相切于点E、F、G三点,且AB∥CD,BO=6,CO=8,则BE+GC的长为_____.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,PA,PB是圆的切线,A,B为切点.

    (1)求作:这个圆的圆心O(用尺规作图,保留作图痕迹,不写作法和证明);
    (2)在(1)的条件下,延长AO交射线PB于C点,若AC=4,PA=3,请补全图形,并求⊙O的半径.
    2、如图,四边形OAEC是平行四边形,以O为圆心,OC为半径的圆交CE于D,延长CO交O于B,连接AD、AB,AB是O的切线.

    (1)求证:AD是O的切线.
    (2)若O的半径为4,,求平行四边形OAEC的面积.
    3、如图,△ABC内接于⊙O,AB是⊙O的直径,直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E.

    (1)求证:直线DC是⊙O的切线;
    (2)若BC=4,∠CAB=30°,求图中阴影部分的面积(结果保留π).
    4、如图,点在轴正半轴上,,点是第一象限内的一点,以为直径的圆交轴于,两点,,两点的横坐标是方程的两个根,,连接.

    (1)如图(1),连接.
    ①求的正切值;
    ②求点的坐标.
    (2)如图(2),若点是的中点,作于点,连接,,,求证:.
    5、如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.

    (1)求证:DE是⊙O的切线;
    (2)若DE=8,AE=6,求⊙O的半径.

    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    根据边心距求得外接圆的半径为2,根据圆锥的底面圆周长等于扇形的弧长,计算圆锥的半径即可.
    【详解】
    如图,过点O作OG⊥AF,垂足为G,
    ∵正六边形的边心距为,
    ∴∠AOG=30°,OG=,
    ∴OA=2AG,
    ∴,
    解得GA=1,
    ∴OA=2,

    设圆锥的半径为r,根据题意,得2πr=,
    解得r=,
    故选C.
    【点睛】
    本题考查了扇形的弧长公式,圆锥的侧面积,熟练掌握弧长公式,圆锥的侧面积公式是解题的关键.
    2、D
    【解析】
    【分析】
    先根据等边三角形的性质求出△OBC的面积,然后由地基的面积是△OBC的6倍即可得到答案
    【详解】
    解:如图所示,正六边形ABCDEF,连接OB,OC,过点O作OP⊥BC于P,
    由题意得:BC=4cm,
    ∵六边形ABCD是正六边形,
    ∴∠BOC=360°÷6=60°,
    又∵OB=OC,
    ∴△OBC是等边三角形,
    ∴,,
    ∴,
    ∴,
    ∴,
    故选D.

    【点睛】
    本题主要考查了正多边形和圆,等边三角形的性质与判定,勾股定理,熟知正多边形和圆的关系是解题的关键.
    3、B
    【解析】
    【分析】
    连结CO,根据切线性质与相切于点,得出OC⊥BC,根据直角三角形两锐角互余∠COB=90°-∠B=90°-40°=50°,然后利用圆周角定理即可.
    【详解】
    解:连结CO,
    ∵与相切于点,
    ∴OC⊥BC,
    ∴∠COB+∠B=90°,
    ∵,
    ∴∠COB=90°-∠B=90°-40°=50°,
    ∴.
    故选B.

    【点睛】
    本题考查圆的切线性质,直角三角形两锐角互余性质,圆周角定理,掌握圆的切线性质,直角三角形两锐角互余性质,圆周角定理是解题关键.
    4、B
    【解析】
    【分析】
    如图连结OA,OB,OG,根据六边形ABCDEF为圆外切正六边形,得出∠AOB=60°△AOB为等边三角形,根据点G为切点,可得OG⊥AB,可得OG平分∠AOB,得出∠AOC=,根据锐角三角函数求解即可.
    【详解】
    解:如图连结OA,OB,OG,
    ∵六边形ABCDEF为圆外切正六边形,
    ∴∠AOB=360°÷6=60°,△AOB为等边三角形,
    ∵点G为切点,
    ∴OG⊥AB,
    ∴OG平分∠AOB,
    ∴∠AOC=,
    ∴cos30°=,
    ∴.
    故选择B.

    【点睛】
    本题考查圆与外切正六边形性质,等边三角形性质,锐角三角形函数,掌握圆与外切正六边形性质,等边三角形性质,锐角三角形函数是解题关键.
    5、A
    【解析】
    【分析】
    直接根据直线与圆的位置关系即可得出结论.
    【详解】
    解:∵⊙O的半径为6,直线m上有一动点P,OP=4,
    ∴直线与⊙O相交.
    故选:A.
    【点睛】
    本题考查的是直线与圆的位置关系,熟知⊙O的半径为r,圆心O到直线l的距离为d,当d=r时,直线l和⊙O相切是解答此题的关键.
    6、D
    【解析】
    【分析】
    设半径为r,如解图,过点O作,根据等腰三角形性质,根据四边形ABCD为矩形,得出∠C=90°=∠OFB,∠OBF=∠DBC,可证.得出,根据勾股定理,代入数据,得出,根据勾股定理在中,,即,根据为的切线,利用勾股定理,解方程即可.
    【详解】
    解:设半径为r,如解图,过点O作,
    ∵OB=OE,
    ∴,
    ∵四边形ABCD为矩形,
    ∴∠C=90°=∠OFB,∠OBF=∠DBC,
    ∴.
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴.
    在中,,即,
    又∵为的切线,
    ∴,
    ∴,
    解得或0(不合题意舍去).
    故选D.

    【点睛】
    本题考查矩形性质,等腰三角形性质,圆的切线,勾股定理,一元二次方程,掌握矩形性质,等腰三角形性质,圆的切线性质,勾股定理,一元二次方程,矩形性质,等腰三角形性质,圆的半径相等,勾股定理,一元二次方程,是解题关键.
    7、D
    【解析】
    【分析】
    先证明ON=CN,再证点H在以ON直径的圆上运动,则当点H在QM的延长线上时,点H到AB的距离最大,由相似三角形的性质可求MK,KQ的长,由三角形的面积公式可求解.
    【详解】
    解:如图,连接AD,交EF于N,连接OC,取ON的中点M,连接MH,过点M作MQ⊥AB于Q,交AO于点K,作MP⊥OA与点P,

    ∵直线分别与x轴、y轴相交于点A、B,
    ∴点A(4,0),点B(0,-3),
    ∴OB=3,OA=4,
    ∴,
    ∵四边形ACDO是正方形,
    ∴OD//AC,AO=AC=OD=4,OC=4,∠COA=45°,
    ∴∠EDN=∠NAF,∠DEN=∠AFN,
    又∵DE=AF,
    ∴△DEN≌△AFN(ASA),
    ∴DN=AN,EN=NF,
    ∴点N是AD的中点,即点N是OC的中点,
    ∴ON=NC=2,
    ∵OH⊥EF,
    ∴∠OHN=90°,
    ∴点H在以ON直径的圆上运动,
    ∴当点H在QM的延长线上时,点H到AB的距离最大,
    ∵点M是ON的中点,
    ∴OM=MN=,
    ∵MP⊥OP,∠COA=45°,
    ∴OP=MP=1,
    ∴AP=3,
    ∵∠OAB+∠OBA=90°=∠OAB+∠AKQ,
    ∴∠AKQ=∠ABO=∠MKP,
    又∵∠AOB=∠MPK=90°,
    ∴△MPK∽△AOB,
    ∴,
    ∴,
    ∴,
    ∴,
    ∵∠AKQ=∠ABO,∠OAB=∠KAQ,
    ∴△AKQ∽△ABO,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴点H到AB的最大距离为,
    ∴△HAB面积的最大值,
    故选:D.
    【点睛】
    本题是四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,一次函数的应用等知识,求出MQ的长是解题的关键.
    8、A
    【解析】
    【分析】
    点在圆外,则点与圆心的距离大于半径,根据点与圆的位置关系解答.
    【详解】
    解:∵⊙O的半径为4,点P 在⊙O外部,
    ∴OP需要满足的条件是OP>4,
    故选:A.
    【点睛】
    此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.
    9、C
    【解析】
    【分析】
    由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根据切线长定理得到AG=AH,∠GAF=∠HAF,进而求出∠GAF=∠HAF=∠DAE=30°,据此对A作出判断;接下来延长EF与AB交于点N,得到EF是⊙O的切线,ANE是等边三角形,证明四边形EFGH是平行四边形,再结合HE=EF可对B作出判断;在RtEFC中,∠C=90°,∠FEC=60°,则EF=2CE,再结合AD=DE对C作出判断;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不难判断D.
    【详解】
    解:由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.
    ∵AB和AE都是⊙O的切线,点G、H分别是切点,
    ∴AG=AH,∠GAF=∠HAF,
    ∴∠GAF=∠HAF=∠DAE=30°,
    ∴∠BAE=2∠DAE,故A正确,不符合题意;
    延长EF与AB交于点N,如图:

    ∵OF⊥EF,OF是⊙O的半径,
    ∴EF是⊙O的切线,
    ∴HE=EF,NF=NG,
    ∴△ANE是等边三角形,
    ∴FG//HE,FG=HE,∠AEF=60°,
    ∴四边形EFGH是平行四边形,∠FEC=60°,
    又∵HE=EF,
    ∴四边形EFGH是菱形,故B正确,不符合题意;
    ∵AG=AH,∠GAF=∠HAF,
    ∴GH⊥AO,故D正确,不符合题意;
    在Rt△EFC中,∠C=90°,∠FEC=60°,
    ∴∠EFC=30°,
    ∴EF=2CE,
    ∴DE=2CE.
    ∵在Rt△ADE中,∠AED=60°,
    ∴AD=DE,
    ∴AD=2CE,故C错误,符合题意.
    故选C.
    【点睛】
    本题是一道几何综合题,考查了切线长定理及推论,切线的判定,菱形的定义,含30的直角三角形的性质,等边三角形的判定和性质,翻折变换等,正确理解翻折变换及添加辅助线是解决本题的关键.
    10、D
    【解析】
    【分析】
    如图所示,设圆的圆心为O,连接OC,OB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明Rt△OCA≌Rt△OBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为.
    【详解】
    解:如图所示,设圆的圆心为O,连接OC,OB,
    ∵AC,AB都是圆O的切线,
    ∴∠OCA=∠OBA=90°,OC=OB,
    又∵OA=OA,
    ∴Rt△OCA≌Rt△OBA(HL),
    ∴∠OAC=∠OAB,
    ∵∠DAC=60°,
    ∴,
    ∴∠AOB=30°,
    ∴OA=2AB=6,
    ∴,
    ∴圆O的直径为,
    故选D.

    【点睛】
    本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.
    二、填空题
    1、
    【解析】
    【分析】
    先由切线的性质得到∠OBC=90°,再由平行四边形的性质得到BO=BC,则∠BOC=∠BCO=45°,由OD=OB,得到∠ODB=∠OBD,由∠ODB+∠OBD=∠BOC,即可得到∠ODB=∠OBD=22.5°,即∠BDC=22.5°.
    【详解】
    解:∵BC是圆O的切线,
    ∴∠OBC=90°,
    ∵四边形ABCO是平行四边形,
    ∴AO=BC,
    又∵AO=BO,
    ∴BO=BC,
    ∴∠BOC=∠BCO=45°,
    ∵OD=OB,
    ∴∠ODB=∠OBD,
    ∵∠ODB+∠OBD=∠BOC,
    ∴∠ODB=∠OBD=22.5°,即∠BDC=22.5°,
    故答案为:22.5°.
    【点睛】
    本题主要考查了平行四边形的性质,切线的性质,等腰三角形的性质与判定,三角形外角的性质,熟知切线的性质是解题的关键.
    2、10
    【解析】
    【分析】
    根据直线AB和圆相切,则圆心到直线的距离等于圆的半径即可得问题答案.
    【详解】
    解:∵⊙O的半径为10,直线AB与⊙O相切,
    ∴圆心到直线AB的距离等于圆的半径,
    ∴d=10;
    故答案为:10;
    【点睛】
    本题考查了直线与圆的位置关系;熟记直线和圆的位置关系与数量之间的联系是解决问题的关键.同时注意圆心到直线的距离应是非负数.
    3、①②③
    【解析】
    【分析】
    根据切线长定理判断①,结合等腰三角形的性质判断②,利用切线的性质与直角三角形的斜边上的中线等于斜边的一半,可判断③,利用反证法判断④.
    【详解】
    解:如图, 是的两条切线,
    故①正确,

    故②正确,
    是的两条切线,

    取的中点,连接,则
    ∴以为圆心,为半径作圆,则共圆,故③正确,
    M是外接圆的圆心,

    与题干提供的条件不符,故④错误,
    综上:正确的说法是①②③.
    故填①②③.

    【点睛】
    本题属于圆的综合题,主要考查的是切线长定理、三角形的外接圆、四边形的外接圆等知识点,综合运用圆的相关知识是解答本题的关键.
    4、90°
    【解析】
    【分析】
    先根据是的内接正六边形一边得,再根据圆周角性质得,再根据平行线的性质得,最后由三角形外角性质可得结论.
    【详解】
    解:∵是的内接正六边形一边





    故答案为90°
    【点睛】
    本题主要考查了正多边形与圆,圆周角定理等知识,熟练掌握相关定理是解答本题的关键
    5、10
    【解析】
    【分析】
    先由切线长定理得到BF=BE,CF=CG,BO平分∠ABC,CO平分∠BCD,再证明∠BOC=90°,然后利用勾股定理计算出BC即可.
    【详解】
    ∵AB,BC,CD分别与⊙O相切于点E、F、G三点,
    ∴BF=BE,CF=CG,BO平分∠ABC,CO平分∠BCD,
    ∴,,
    ∴,
    ∵AB∥CD,
    ∴∠ABC+∠BCD=180°,
    ∴,
    ∴∠BOC=90°,
    在Rt△OBC中,∵BO=6,CO=8,
    ∴,
    ∴BE+CG=10.
    故答案为:10.
    【点睛】
    此题考查了切线长定理、切线的性质、勾股定理以及直角三角形的判定与性质.此题难度适中,正确理解切线长定理是解决本题的关键.
    三、解答题
    1、 (1)见解析;
    (2)见解析,的半径为
    【解析】
    【分析】
    (1)过点B作BP的垂线,作∠APB的平分线,二线的交点就是圆心;
    (2)根据切线的性质,利用勾股定理,建立一元一次方程求解即可.
    (1)
    如图所示,点O即为所求

    (2)
    如图,∵PA是圆的切线,AO是半径,PB是圆的切线,
    ∴∠CAP=90°,PA=PB=3,∠CBO=90°,
    ∵AC=4,
    ∴PC==5,BC=5-3=2,
    设圆的半径为x,则OC=4-x,
    ∴,
    解得x=,
    故圆的半径为.
    【点睛】
    本题考查了垂线的画法,角的平分线的画法,切线的性质,切线长定理,勾股定理,一元一次方程的解法,熟练掌握切线的性质,切线长定理和勾股定理是解题的关键.
    2、 (1)见解析
    (2)32
    【解析】
    【分析】
    (1)连接OD,证明,可得,根据切线的性质可得,进而可得,即可证明AD是O的切线;
    (2)根据平行四边形OAEC的面积等于2倍即可求解.
    (1)
    证明:连接OD.

    ∵四边形OAEC是平行四边形,
    ∴,




    又∵,

    ∴,
    ∵AB与相切于点B,


    ∴,

    又∵OD是的半径,
    ∴AD为的切线.
    (2)


    在Rt△AOD中,
    ∴平行四边形OABC的面积是
    【点睛】
    本题考查了切线的性质与判定,平行四边形的性质,三角形全等的性质与判定,掌握切线的性质与判定是解题的关键.
    3、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)连接OC,由题意得,根据等边对等角得,,即可得,则,即可得;
    (2)根据三角形的外角定理得,又根据得是等边三角形,则,根据三角形内角和定理得,根据直角三角形的性质得,根据勾股定理得,用三角形OEC的面积减去扇形OCB的面积即可得.
    (1)
    证明:如图所示,连接OC,

    ∵AB是的直径,直线l与相切于点A,
    ∴,
    ∵,,
    ∴,,
    ∴,
    ∴,
    ∴直线DC是的切线.
    (2)
    解:∵,
    ∴,
    又∵,
    ∴是等边三角形,
    ∴,
    在中,,
    ∴,
    ∴,
    ∴,
    ∴阴影部分的面积=.
    【点睛】
    本题考查了切线,三角形的外角定理,等边三角形的判定与性质,直角三角形的性质,勾股定理,解题的关键是掌握这些知识点.
    4、 (1)①,②(4,3)
    (2)见解析
    【解析】
    【分析】
    (1)①过点P作PH⊥DC于H,作AF⊥PH于F,连接PD、AD,利用因式分解法解出一元二次方程,求出OD、OC,根据垂径定理求出DH,根据勾股定理计算求出半径,根据圆周角定理得到∠ADB=90°,根据正切的定义计算即可;②过点B作BE⊥x轴于点E,作AG⊥BE于G,根据平行线分线段成比例定理定理分别求出OE、BE,得到点B的坐标;
    (2)过点E作EH⊥x轴于H,证明△EHD≌△EFB,得到EH=EF,DH=BF,再证明Rt△EHC≌Rt△EFC,得到CH=CF,结合图形计算,证明结论.
    (1)
    解:①以AB为直径的圆的圆心为P,
    过点P作PH⊥DC于H,作AF⊥PH于F,连接PD、AD,
    则DH=HC=DC,四边形AOHF为矩形,
    ∴AF=OH,FH=OA=1,
    解方程x2﹣4x+3=0,得x1=1,x2=3,
    ∵OC>OD,
    ∴OD=1,OC=3,
    ∴DC=2,
    ∴DH=1,
    ∴AF=OH=2,
    设圆的半径为r,则PH2=,
    ∴PF=PH﹣FH,
    在Rt△APF中,AP2=AF2+PF2,即r2=22+(PH﹣1)2,
    解得:r=,PH=2,PF=PH﹣FH=1,
    ∵∠AOD=90°,OA=OD=1,
    ∴AD=,
    ∵AB为直径,
    ∴∠ADB=90°,
    ∴BD===3,
    ∴tan∠ABD===;
    ②过点B作BE⊥x轴于点E,交圆于点G,连接AG,
    ∴∠BEO=90°,
    ∵AB为直径,
    ∴∠AGB=90°,
    ∵∠AOE=90°,
    ∴四边形AOEG是矩形,
    ∴OE=AG,OA=EG=1,
    ∵AF=2,
    ∵PH⊥DC,
    ∴PH⊥AG,
    ∴AF=FG=2,
    ∴AG=OE=4,BG=2PF=2,
    ∴BE=3,
    ∴点B的坐标为(4,3);

    (2)
    证明:过点E作EH⊥x轴于H,
    ∵点E是的中点,
    ∴=,
    ∴ED=EB,
    ∵四边形EDCB为圆P的内接四边形,
    ∴∠EDH=∠EBF,
    在△EHD和△EFB中,

    ∴△EHD≌△EFB(AAS),
    ∴EH=EF,DH=BF,
    在Rt△EHC和Rt△EFC中,

    ∴Rt△EHC≌Rt△EFC(HL),
    ∴CH=CF,
    ∴2CF=CH+CF=CD+DH+BC﹣BF=BC+CD.

    【点睛】
    本题考查的是圆周角定理、全等三角形的判定和性质、垂径定理、勾股定理的应用,正确作出辅助线、求出圆的半径是解题的关键.
    5、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)连接OD,根据等腰三角形的性质和角平分线定义证得∠ODA=∠DAE,可证得DO∥MN,根据平行线的性质和切线的判定即可证的结论;
    (2)连接CD,先由勾股定理求得AD,连接CD,根据圆周角定理和相似三角形的判定证明△ACD∽△ADE,然后根据相似三角形的性质求解AC即可求解.
    (1)
    证明:连接OD,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∵AD平分∠CAM,∠OAD=∠DAE,
    ∴∠ODA=∠DAE,
    ∴DO∥MN,
    ∵DE⊥MN,
    ∴DE⊥OD,
    ∵D在⊙O上,
    ∴DE是⊙O的切线;
    (2)
    解:∵∠AED=90°,DE=8,AE=6,
    ∴AD==10,
    连接CD,∵AC是⊙O的直径,
    ∴∠ADC=∠AED=90°,
    ∵∠CAD=∠DAE,
    ∴△ACD∽△ADE,
    ∴,即,
    ∴AC=,
    ∴⊙O的半径是.

    【点睛】
    本题考查等腰三角形的性质、角平分线的定义、平行线的判定与性质、切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质等知识,熟练掌握相关知识的联系与运用是解答的关键.

    相关试卷

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀巩固练习: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀巩固练习,共34页。

    初中冀教版第29章 直线与圆的位置关系综合与测试优秀同步练习题: 这是一份初中冀教版第29章 直线与圆的位置关系综合与测试优秀同步练习题,共38页。试卷主要包含了将一把直尺,以半径为1的圆的内接正三角形等内容,欢迎下载使用。

    数学冀教版第29章 直线与圆的位置关系综合与测试优秀随堂练习题: 这是一份数学冀教版第29章 直线与圆的位置关系综合与测试优秀随堂练习题,共34页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map