初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课时作业
展开九年级数学下册第二十九章直线与圆的位置关系难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,PA、PB是的切线,A、B为切点,连接OB、AB,若,则的度数为( )
A.50° B.55° C.65° D.70°
2、下列说法正确的是( )
A.三点确定一个圆 B.任何三角形有且只有一个内切圆
C.相等的圆心角所对的弧相等 D.正多边形一定是中心对称图形
3、已知⊙O的半径为5,若点P在⊙O内,则OP的长可以是( )
A.4 B.5 C.6 D.7
4、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).
A.20° B.25° C.30° D.40°
5、圆O的半径为5cm,点A到圆心O的距离OA=4cm,则点A与圆O的位置关系为( )
A.点A在圆上 B.点A在圆内 C.点A在圆外 D.无法确定
6、如图,与的两边分别相切,其中OA边与⊙C相切于点P.若,,则OC的长为( )
A.8 B. C. D.
7、直角三角形的外接圆半径为3,内切圆半径为1,则该直角三角形的周长是( )
A.12 B.14 C.16 D.18
8、在△ABC中,,点O为AB中点.以点C为圆心,CO长为半径作⊙C,则⊙C 与AB的位置关系是( )
A.相交 B.相切
C.相离 D.不确定
9、如图,从⊙O外一点P引圆的两条切线PA,PB,切点分别是A,B,若∠APB=60°,PA=5,则弦AB的长是( )
A. B. C.5 D.5
10、如图,面积为18的正方形ABCD内接于⊙O,则⊙O的半径为( )
A. B.
C.3 D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,、是的切线,其中、为切点,点在上,,则______.
2、如图,在△ABC中,∠ACB=90°,CD=2,以CD为直径的⊙与AB相切于点E.若弧DE的长为为π,则阴影部分的面积为 _____.(保留π)
3、如图AB为⊙O的直径,点P为AB延长线上的点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是______(写所有正确论的号)
①AM平分∠CAB;②;③若AB=4,∠APE=30°,则的长为;④若AC=3BD,则有tan∠MAP=.
4、如图,五边形是⊙的内接正五边形,则的度数是____.
5、如图,已知正方形ABCD的边长为4,点E在BC上,DE为以AB为直径的半圆的切线,切点为F,连结CF,则ED的长为______,CF的长为______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在平面直角坐标系中,,的半径为1.如果将线段绕原点逆时针旋转后的对应线段所在的直线与相切,且切点在线段上,那么线段就是⊙C 的“关联线段”,其中满足题意的最小就是线段与的“关联角”.
(1)如图1,如果线段是的“关联线段”,那么它的“关联角”为______.
(2)如图2,如果、、、、、.那么的“关联线段”有______(填序号,可多选).
①线段;②线段;③线段
(3)如图3,如果、,线段是的“关联线段”,那么的取值范围是______.
(4)如图4,如果点的横坐标为,且存在以为端点,长度为的线段是的“关联线段”,那么的取值范围是______.
2、如图,点E是的内心,AE的延长线交BC于点F,交的外接圆点D.过D作直线.
(1)求证:DM是的切线;
(2)求证:;
(3)若,,求的半径.
3、如图,已知AB是⊙P的直径,点在⊙P上,为⊙P外一点,且∠ADC=90°,2∠B+∠DAB=180°
(1)试说明:直线为⊙P的切线.
(2)若∠B=30°,AD=2,求CD的长.
4、苏科版教材八年级下册第94页第19题,小明在学过圆之后,对该题进行重新探究,请你和他一起完成问题探究.
【问题探究】小明把原问题转化为动点问题,如图1,在边长为6cm的正方形ABCD中,点E从点A出发,沿边AD向点D运动,同时,点F从点B出发,沿边BA向点A运动,它们的运动速度都是2cm/s,当点E运动到点D时,两点同时停止运动,连接CF、BE交于点M,设点E, F运动时问为t秒.
(1)【问题提出】如图1,点E,F分别在方形ABCD中的边AD、AB上,且,连接BE、CF交于点M,求证:.请你先帮小明加以证明.
(2)如图1,在点E、F的运动过程中,点M也随之运动,请直接写出点M的运动路径长 cm.
(3)如图2,连接CE,在点E、F的运动过程中.
①试说明点D在△CME的外接圆O上;
②若①中的O与正方形的各边共有6个交点,请直接写出t的取值范围.
5、如图,是的直径,是半径,连接,.延长至点,使,过点作交的延长线于点.
(1)求证:是的切线;
(2)若,,求半径的长.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据切线的性质得出PA=PB,∠PBO=90°,再根据三角形内角和定理求解即可.
【详解】
∵PA、PB是⊙O的切线,
∴PA=PB,∠OBP=90°,
又∵∠ABO=25°,
∴∠PBA=90°-25°=65°=∠PAB,
∴∠P=180°-65°-65°=50°,
故选:A.
【点睛】
本题考查切线的性质,三角形内角和定理,掌握切线的性质和等腰三角形的性质,三角形内角和为180°是解题的关键.
2、B
【解析】
【分析】
根据确定圆的条件、三角形的内切圆、圆心角化和弧的关系、中心对称图形的概念判断.
【详解】
解:A、不在同一直线上的三点确定一个圆,故错误;
B、任何三角形有且只有一个内切圆,正确;
C、在同圆或等圆中,相等的圆心角所对的弧相等,故错误;
D、边数是偶数的正多边形一定是中心对称图形,故错误;
故选:B.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
3、A
【解析】
【分析】
根据点与圆的位置关系可得,由此即可得出答案.
【详解】
解:的半径为5,点在内,
,
观察四个选项可知,只有选项A符合,
故选:A.
【点睛】
本题考查了点与圆的位置关系,熟练掌握点与圆的位置关系(圆内、圆上、圆外)是解题关键.
4、B
【解析】
【分析】
连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.
【详解】
解:连接OA,如图,
∵PA是⊙O的切线,
∴OA⊥AP,
∴∠PAO=90°,
∵∠P=40°,
∴∠AOP=50°,
∵OA=OB,
∴∠B=∠OAB,
∵∠AOP=∠B+∠OAB,
∴∠B=∠AOP=×50°=25°.
故选:B.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
5、B
【解析】
【分析】
根据点与圆的位置关系的判定方法进行判断.
【详解】
解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,
即点A到圆心O的距离小于圆的半径,
∴点A在⊙O内.
故选:B.
【点睛】
本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.
6、C
【解析】
【分析】
如图所示,连接CP,由切线的性质和切线长定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根据勾股定理求解即可.
【详解】
解:如图所示,连接CP,
∵OA,OB都是圆C的切线,∠AOB=90°,P为切点,
∴∠CPO=90°,∠COP=45°,
∴∠PCO=∠COP=45°,
∴CP=OP=4,
∴,
故选C.
【点睛】
本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键.
7、B
【解析】
【分析】
⊙I切AB于E,切BC于F,切AC于D,连接IE,IF,ID,得出正方形CDIF推出CD=CF=1,根据切线长定理得出AD=AE,BE=BF,CF=CD,求出AD+BF=AE+BE=AB=6,即可求出答案.
【详解】
解:如图,⊙I切AB于E,切BC于F,切AC于D,连接IE,IF,ID,
则∠CDI=∠C=∠CFI=90°,ID=IF=1,
∴四边形CDIF是正方形,
∴CD=CF=1,
由切线长定理得:AD=AE,BE=BF,CF=CD,
∵直角三角形的外接圆半径为3,内切圆半径为1,
∴AB=6=AE+BE=BF+AD,
即△ABC的周长是AC+BC+AB=AD+CD+CF+BF+AB=6+1+1+6=14,
故选:B.
【点睛】
本题考查了直角三角形的外接圆与内切圆,正方形的性质和判定,切线的性质,切线长定理等知识点的综合运用.
8、B
【解析】
【分析】
根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得⊙C 与AB的位置关系
【详解】
解:连接,
,点O为AB中点.
CO为⊙C的半径,
是的切线,
⊙C 与AB的位置关系是相切
故选B
【点睛】
本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.
9、C
【解析】
【分析】
先利用切线长定理得到PA=PB,再利用∠APB=60°可判断△APB为等边三角形,然后根据等边三角形的性质求解.
【详解】
解:∵PA,PB为⊙O的切线,
∴PA=PB,
∵∠APB=60°,
∴△APB为等边三角形,
∴AB=PA=5.
故选:C.
【点睛】
本题考查了切线长定理以及等边三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.
10、C
【解析】
【分析】
连接OA、OB,则为等腰直角三角形,由正方形面积为18,可求边长为,进而通过勾股定理,可得半径为3.
【详解】
解:如图,连接OA,OB,则OA=OB,
∵四边形ABCD是正方形,
∴,
∴是等腰直角三角形,
∵正方形ABCD的面积是18,
∴,
∴,即:
∴
故选C.
【点睛】
本题考查了正多边形和圆、正方形的性质等知识,构造等腰直角三角形是解题的关键.
二、填空题
1、76
【解析】
【分析】
连接OA、OB,根据圆周角定理求得∠AOB,由切线的性质求出∠OAP=∠OBP=90°,再由四边形的内角和等于360°,即可得出答案
【详解】
解:连接OA、OB,,
∴∠AOB=104°
∵PA、PB是⊙O的两条切线,点A、B为切点,
∴∠OAP=∠OBP=90°
∵∠APB+∠OAP+∠AOB+∠OBP=360°
∴∠APB=180°-(∠OAP+∠AOB+∠OBP)=76°
故答案为:76
【点睛】
本题考查了切线的性质、四边形的内角和定理以及圆周角定理,利用切线性质和圆周角定理求出角的度数是解题的关键
2、
【解析】
【分析】
连接OE,首先由弧长公式求得∠EOD=60°;然后利用△BEO的性质得到线段OB的长度,易得AC与BC的长度;最后根据S阴影=S△ABC﹣S扇形OCE﹣S△OBE解答.
【详解】
解:如图,连接OE,
∵以CD为直径的⊙与AB相切于点E,
∴OE⊥BE.
设∠EOD=n°,
∵OD= CD=1,弧DE的长为π,
∴=π.
∴∠EOD=60°.
∴∠B=30°,∠COE=120°.
∴OB=2OE=2,BE=,AB=2AC,
∵AC=AE,
∴AC=BE=.
∴S阴影=S△ABC﹣S扇形OCE﹣S△OBE
=××3﹣﹣×1×=﹣.
故答案是:﹣.
【点睛】
考查了切线的性质,弧长的计算和扇形面积的计算,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.
3、①②④
【解析】
【分析】
连接OM,由切线的性质可得,继而得,再根据平行线的性质以及等边对等角即可求得,由此可判断①;通过证明,根据相似三角形的对应边成比例可判断②;求出,利用弧长公式求得的长可判断③;由,,,可得,继而可得,,进而有,在中,利用勾股定理求出PD的长,可得,由此可判断④.
【详解】
解:连接OM,
∵PE为的切线,
∴,
∵,
∴,
∴,
∵,,
∴,
即AM平分,故①正确;
∵AB为的直径,
∴,
∵,,
∴,
∴,
∴,故②正确;
∵,
∴,
∵,
∴,
∴的长为,故③错误;
∵,,,
∴,
∴,
∴,
∴,
又∵,,,
∴,
又∵,
∴,
设,则,
∴,
在中,,
∴,
∴,
由①可得,
,
故④正确,
故答案为:①②④.
【点睛】
本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
4、
【解析】
【分析】
根据圆内接正五边形的定义求出∠COD,利用三角形内角和求出答案.
【详解】
解:∵五边形是⊙的内接正五边形,
∴∠COD=,
∵OC=OD,
∴=,
故答案为:.
【点睛】
此题考查了圆内接正五边形的性质,三角形内角和定理,同圆的半径相等的性质,熟记圆内接正五边形的性质是解题的关键.
5、 5
【解析】
【分析】
先证明BE、AD也是半圆的切线,即可根据切线长定理得到EB=EF、DA=DF,再在△DCE中即可求出DE的值;过F作FG⊥DC于G,根据相似求出FG、CG的长,最后根据勾股定理即可求出CF的值.
【详解】
∵正方形ABCD
∴CD=AD=BC=4,CE⊥AB,DA⊥AB
∵以AB为直径的半圆
∴BE、AD也是半圆的切线
∵DE为以AB为直径的半圆的切线,
∴EB=EF、DA=DF=4
∴EC=BC-BE=4-EF,DE=DF+EF=4+EF
在Rt△DCE中,
∴
解得
∴DE=DF+EF=4+EF=5
过F作FG⊥DC于G,如图
∴
∴
∴
解得
∴
∴在Rt△DCE中,
故答案为:5,
【点睛】
本题考查切割线定理、相似三角形的性质与判定,解题的关键是能看出有多条切线.
三、解答题
1、 (1)
(2)②,③
(3)
(4)
【解析】
【分析】
(1)作OD与相切,此时所得最小,根据切线的性质可得,再由含角的直角三角形的特殊性质可得,再由勾股定理可得OD长度,判断切点在OD上即可得
(2)根据勾股定理求出各点与原点的距离与最长切线距离比较即可得;
(3)线段BD绕点O的旋转路线的半径为1的上,当OD与相切时,由(1)可得:,根据题意即可确定t的取值范围,得出线段BD是的“关联线段”;
(4)当m取最大值时,M点运动最小半径是O到过点的直线l的距离m,根据题意可得,得出,即为m的最大值;当m取最小值时,作出相应图形,根据题意可得,再由,及点M所在位置,即可确定m的最小值,综合即可得.
(1)
解:如图所示:作OD与相切,
∴,
∵,,
∴,
∴,
∴此时的角度最小,且,
∴切点在线段OD上,
∴OA的关联角为;
(2)
解:如图所示:连接,,,,
∵,,
∴,
∴切点不在线段上,不是的“关联线段”;
∵,,
∴,,
∵,
∴是的“关联线段”;
∵,
∴是的“关联线段”;
(3)
解:,,线段BD绕点O的旋转路线的半径为1的上,
当OD与相切时,
由(1)可得:,
∴当时,线段BD是的“关联线段”,
故答案为:;
(4)
解:如图所示:当m取最大值时,
M点运动最小半径是O到过点的直线l的距离是m,
∵,,
∴,
∴,
∴m的最大值为4,
如图所示:当m取小值时,
开始时存在ME与相切,
∵,,
∴,
∵,及点M所在位置,
∴,
综上可得:,
故答案为:.
【点睛】
题目主要考查直线与圆的位置关系,线段旋转的性质,勾股定理解三角形等,理解题意,作出相应图象是解题关键.
2、 (1)见解析
(2)见解析
(3)⊙O的半径为5.
【解析】
【分析】
(1)连接OD交BC于H,根据圆周角定理和切线的判定即可证明;
(2)连接BD,由点E是△ABC的内心,得到∠ABE=∠CBE,∠DBC=∠BAD,推出∠BED=∠DBE,根据等角对等边得到BD=DE;
(3)根据垂径定理和勾股定理即可求出结果.
(1)
证明:连接OD交BC于H,如图,
∵点E是△ABC的内心,
∴AD平分∠BAC,
即∠BAD=∠CAD,
∴,
∴OD⊥BC,BH=CH,
∵DM∥BC,
∴OD⊥DM,
∴DM是⊙O的切线;
(2)
证明:∵点E是△ABC的内心,
∴∠ABE=∠CBE,
∵,
∴∠DBC=∠BAD,
∴∠DEB=∠BAD+∠ABE=∠DBC+∠CBE=∠DBE,
即∠BED=∠DBE,
∴BD=DE;
(3)
解:设⊙O的半径为r,
连接OD,OB,如图,
由(1)得OD⊥BC,BH=CH,
∵BC=8,
∴BH=CH=4,
∵DE=2,BD=DE,
∴BD=2,
在Rt△BHD中,BD2=BH2+HD2,
∴(2)2=42+HD2,解得:HD=2,
在Rt△BHO中,
r2=BH2+(r-2)2,解得:r=5.
∴⊙O的半径为5.
【点睛】
本题考查了三角形的内心,切线的判定与性质,三角形的外接圆与外心,圆周角定理,垂径定理,解决本题的关键是综合运用以上知识.
3、 (1)见解析
(2)
【解析】
【分析】
(1)连接PC,则∠APC=2∠B,可证PC∥DA,证得PC⊥CD,则结论得证;
(2)连接AC,根据∠B=30°,等腰三角形外角性质∠CPA=2∠B=60°,再证△APC为等边三角形,可求∠DCA=90°-∠ACP=90°-60°=30°,AD=2,∠ADC=90°,利用30°直角三角形性质得出AC=2AD=4,然后根据勾股定理CD=即可.
(1)
连接PC,
∵PC=PB,
∴∠B=∠PCB,
∴∠APC=2∠B,
∵2∠B+∠DAB=180°,
∴∠DAP+∠APC=180°,
∴PC∥DA,
∵∠ADC=90°,
∴∠DCP=90°,
即DC⊥CP,
∴直线CD为⊙P的切线;
(2)
连接AC,
∵∠B=30°,
∴∠CPA=2∠B=60°,
∵AP=CP,∠CPA=60°,
∴△APC为等边三角形,
∵∠DCP=90°,
∴∠DCA=90°-∠ACP=90°-60°=30°,
∵AD=2,∠ADC=90°,
∴AC=2AD=4,
∴CD=.
【点睛】
本题考查切线的判定、平行线判定与性质,勾股定理、等腰三角形性质,外角性质,等边三角形的判定与性质等知识,解题的关键是灵活应用这些知识解决问题.
4、 (1)见解析
(2)
(3)①见解析;②
【解析】
【分析】
(1)根据正方形的性质以及动点的路程相等,证明,根据同角的余角相等,即可证明,即;
(2)当t=0时,点M与点B重合,当时,点随之停止,求得运动轨迹为圆,根据弧长公式进行计算即可;
(3)①根据(2)可得△CME的外接圆的圆心O是斜边CE的中点,继而判断点D、C、M、E在同一个圆()上;②当与AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当与AB相切时”是临界情况.如图4,当与AB相切(切点为G),连接OG,并延长GO交CD于点H,在Rt△CHO中求得半径,进而勾股定理求得,即可求得当时,与正方形的各边共有6个交点.
(1)
四边形是正方形,
,
又的运动速度都是2cm/s,
即
(2)
∵.
∴点M在以CB为直径的圆上,如图1,当t=0时,点M与点B重合;
如图2,当t=3时,点M为正方形对角线的交点.点M的运动路径为圆,其路径长.
故答案为:
(3)
①如图3.由前面结论可知:
∴△CME的外接圆的圆心O是斜边CE的中点,
则
在Rt△CDE中,,O是CE的中点.
∴,
∴
∴点D、C、M、E在同一个圆()上,
即点D在△CME的外接圆上;.
②.
如图4,当与AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当与AB相切时”是临界情况.
如图4,当与AB相切(切点为G),连接OG,并延长GO交CD于点H.
∵AB与相切,
∴,
又∵,
∴,
设的半径为R.由题意得:
在Rt△CHO中,,解得
∴
∴,即
∴如图5,当时,与正方形的各边共有6个交点.
【点睛】
本题考查了求弧长,切线的性质,直径所对的圆周角是直角,三角形的外心,正方形的性质,全等三角形的性质与判定,分类讨论是解题的关键.
5、 (1)证明见解析
(2)⊙O半径的长为
【解析】
【分析】
(1)根据角度的数量关系,可得,即,进而可证是的切线;
(2)由题意知,,由可得的值,由,知,,得,在中,,求解即可.
(1)
证明:∵是的直径
∴
∴
∵
∴
∴,
∴
∴是的切线;
(2)
解:∵,
∴
∵
∴
∵,
∴
∴,
∵
∴
∴,
在中,,即
∴
∴半径长为.
【点睛】
本题考查了切线的判定,勾股定理,正切值.解题的关键在于对知识的灵活运用.
冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品复习练习题: 这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品复习练习题,共38页。试卷主要包含了已知M,下面四个结论正确的是等内容,欢迎下载使用。
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀练习题: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀练习题,共33页。试卷主要包含了如图,,如图,将的圆周分成五等分等内容,欢迎下载使用。
初中冀教版第29章 直线与圆的位置关系综合与测试优秀综合训练题: 这是一份初中冀教版第29章 直线与圆的位置关系综合与测试优秀综合训练题,共32页。试卷主要包含了如图,一把宽为2cm的刻度尺等内容,欢迎下载使用。