终身会员
搜索
    上传资料 赚现金
    难点解析冀教版八年级数学下册第二十二章四边形同步训练试题(精选)
    立即下载
    加入资料篮
    难点解析冀教版八年级数学下册第二十二章四边形同步训练试题(精选)01
    难点解析冀教版八年级数学下册第二十二章四边形同步训练试题(精选)02
    难点解析冀教版八年级数学下册第二十二章四边形同步训练试题(精选)03
    还剩26页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀随堂练习题

    展开
    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀随堂练习题,共29页。试卷主要包含了下列命题不正确的是等内容,欢迎下载使用。

    八年级数学下册第二十二章四边形同步训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、将一长方形纸条按如图所示折叠,,则( )

    A.55° B.70° C.110° D.60°
    2、如图,在平行四边形中,平分,交边于,,,则的长为( )

    A.1 B.2 C.3 D.5
    3、如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形( )

    A.OA=OC,OB=OD B.AB=CD,AO=CO
    C.AB=CD,AD=BC D.∠BAD=∠BCD,AB∥CD
    4、在菱形ABCD中,对角线AC,BD相交于点O,如果AC=6,BD=8,那么菱形ABCD的面积是(  )
    A.6 B.12 C.24 D.48
    5、如图,四边形中,,对角线,相交于点,于点,于点,连接,,若,则下列结论:
    ①;
    ②;
    ③四边形是平行四边形;
    ④图中共有四对全等三角形.
    其中正确结论的个数是( )

    A.4 B.3 C.2 D.1
    6、下列命题不正确的是( )
    A.三边对应相等的两三角形全等
    B.若,则
    C.有一组对边平行、另一组对边相等的四边形是平行四边形
    D.的三边为a、b、c,若,则是直角三角形.
    7、如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=6,F为DE的中点.若OF的长为1,则△CEF的周长为( )

    A.14 B.16 C.18 D.12
    8、如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是( )

    A.1 B.4 C.2 D.6
    9、下列命题中是真命题的是( ).A.有一组邻边相等的平行四边形是菱形 B.对角线互相垂直且相等的四边形是菱形
    C.对角线相等的四边形是矩形 D.有一个角为直角的四边形是矩形
    10、如图,菱形ABCD的面积为24cm2,对角线BD长6cm,点O为BD的中点,过点A作AE⊥BC交CB的延长线于点E,连接OE,则线段OE的长度是( )

    A.3cm B.4cm C.4.8cm D.5cm
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,A、B、C均为一个正十边形的顶点,则∠ACB=_____°.

    2、如图,正方形ABCD中,E是BC边上的一点,连接AE,将AB边沿AE折叠到AF.延长EF交DC于G,点G恰为CD边中点,连接AG,CF,AC.若AB=6,则△AFC的面积为_______.

    3、过某个多边形一个顶点的所有对角线,将此多边形分成7个三角形,则此多边形的边数______.
    4、如图,菱形ABCD的边长为4,∠BAD=120°,E是边CD的中点,F是边AD上的一个动点,将线段EF绕着点E顺时针旋转60°得到线段EF',连接AF'、BF',则△ABF'的周长的最小值是________________.

    5、在平行四边形ABCD中,对角线AC长为8cm,,,则它的面积为______cm2.
    三、解答题(5小题,每小题10分,共计50分)
    1、已知∠MON=90°,点A是射线ON上的一个定点,点B是射线OM上的一个动点,点C在线段OA的延长线上,且AC=OB.

    (1)如图1,CDOB,CD=OA,连接AD,BD.
    ① ;
    ②若OA=2,OB=3,则BD= ;
    (2)如图2,在射线OM上截取线段BE,使BE=OA,连接CE,当点B在射线OM上运动时,求∠ABO和∠OCE的数量关系;
    (3)如图3,当E为OB中点时,平面内一动点F满足FA=OA,作等腰直角三角形FQC,且FQ=FC,当线段AQ取得最大值时,直接写出的值.
    2、已知:在平行四边形ABCD中,分别延长BA,DC到点E,H,使得BE=2AB,DH=2CD.连接EH,分别交AD,BC于点F,G.

    (1)求证:AF=CG;
    (2)连接BD交EH于点O,若EH⊥BD,则当线段AB与线段AD满足什么数量关系时,四边形BEDH是正方形?
    3、如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.
    (1)计算AC2+BC2的值等于_____;
    (2)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明)_____.

    4、如图,在中,,,E、F分别为AB、CD边上两点,FB平分.

    (1)如图1,若,,求CD的长;
    (2)如图2,若G为EF上一点,且,求证:.
    5、已知正多边形的内角和比外角和大720°,求该正多边形所有对角线的条数.

    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    从折叠图形的性质入手,结合平行线的性质求解.
    【详解】
    解:由折叠图形的性质结合平行线同位角相等可知,,


    故选:B.
    【点睛】
    本题考查折叠的性质及平行线的性质,解题的关键是结合图形灵活解决问题.
    2、B
    【解析】
    【分析】
    先由平行四边形的性质得,,再证,即可求解.
    【详解】
    解:四边形是平行四边形,
    ,,

    平分,




    故选:B.
    【点睛】
    本题考查了平行四边形的性质,等腰三角形的判定等知识,解题的关键是灵活应用这些知识解决问题.
    3、B
    【解析】

    4、C
    【解析】
    【分析】
    利用菱形的面积公式即可求解.
    【详解】
    解:菱形ABCD的面积===24,
    故选:C.
    【点睛】
    本题考查菱形的面积公式,菱形的面积等于对角线乘积的一半.
    5、B
    【解析】
    【分析】
    由DE=BF以及DF=BE,可证明Rt△DCF≌Rt△BAE,由FC=EA,以及双垂直可证,四边形CFAE是平行四边形由此可证明②③正确.
    【详解】
    解:,

    在和中,


    ,(故①正确);
    于点,于点,


    四边形是平行四边形,
    ,(故②正确);




    四边形是平行四边形,(故③正确);
    由以上可得出:,,,
    ,,,等.(故④错误),
    故正确的有3个,
    故选:.
    【点评】
    此题主要考查了平行四边形的性质与判定以及全等三角形的判定与性质等知识,得出是解题关键.
    6、C
    【解析】
    【分析】
    根据三角形全等的判定定理(定理)、乘方运算法则、平行四边形的判定、勾股定理的逆定理逐项判断即可得.
    【详解】
    解:A、三边对应相等的两三角形全等,此命题正确,不符题意;
    B、若,则,此命题正确,不符题意;
    C、有一组对边平行、另一组对边相等的四边形有可能是等腰梯形,不一定是平行四边形,所以此项命题不正确,符合题意;
    D、的三边为、、,若,即,则是直角三角形,此命题正确,不符题意;
    故选:C.
    【点睛】
    本题考查了三角形全等的判定定理、乘方运算法则、平行四边形的判定、勾股定理的逆定理,熟练掌握各定理是解题关键.
    7、B
    【解析】
    【分析】
    根据中位线的性质及直角三角形斜边上中线的性质可得:,结合图形得出的周长为,再由中位线的性质得出,在中,利用勾股定理确定,即可得出结论.
    【详解】
    解:在正方形ABCD中,,,,
    ∵F为DE的中点,O为BD的中点,
    ∴OF为的中位线且CF为斜边上的中线,
    ∴,
    ∴的周长为,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    在中,,,,
    ∴,
    ∴的周长为,
    故选:B.
    【点睛】
    题目主要考查正方形的性质,三角形中位线的性质,勾股定理,直角三角形斜边中线的性质等,理解题意,熟练掌握运用各个知识点是解题关键.
    8、C
    【解析】

    9、A
    【解析】
    【分析】
    根据平行线四边形的性质得到对边相等,加上一组邻边相等,可得到四边都相等,根据菱形的定义对A、B进行判断;根据矩形的判定方法对C、D进行判断.
    【详解】
    解:A、平行四边形的对边相等,若有一组邻边相等,则四边都相等,所以该选项正确;
    B、对角线互相平分且垂直的四边形是菱形,所以该选项不正确;
    C、对角线互相平分且相等的四边形为矩形,所以该选项不正确;
    D、有三个角是直角的四边形是矩形,所以该选项不正确.
    故选:A.
    【点睛】
    本题考查了命题与定理:判断事情的语句叫命题;正确的命题叫真命题;经过证明其正确性的命题称为定理.也考查了平行四边形、矩形和菱形的判定与性质.
    10、B
    【解析】
    【分析】
    由菱形的性质得出BD=6cm,由菱形的面积得出AC=8cm,再由直角三角形斜边上的中线等于斜边的一半即可得出结果.
    【详解】
    解:∵四边形ABCD是菱形,
    ∴BD⊥AC,
    ∵BD=6cm,S菱形ABCD═AC×BD=24cm2,
    ∴AC=8cm,
    ∵AE⊥BC,
    ∴∠AEC=90°,
    ∴OE=AC=4cm,
    故选:B.
    【点睛】
    本题主要考查了菱形的性质、直角三角形斜边上的中线性质;熟练掌握菱形的性质是解题的关键.
    二、填空题
    1、
    【解析】
    【分析】
    根据正多边形外角和和内角和的性质,得、;根据四边形内角和的性质,计算得;根据五边形内角和的性质,计算得,再根据三角形外角的性质计算,即可得到答案.
    【详解】
    如图,延长BA

    ∵正十边形
    ∴,正十边形内角,即
    根据题意,得四边形内角和为:,且


    根据题意,得五边形内角和为:,且


    故答案为:.
    【点睛】
    本题考查了正多边形、三角形外角的知识;解题的关键是熟练掌握正多边形外角和、正多边形内角和的性质,从而完成求解.
    2、3.6##
    【解析】
    【分析】
    首先通过HL证明Rt△ABE≌Rt△AFB,得BE=EF,同理可得:DG=FG,设BE=x,则CE=6﹣x,EG=3+x,在Rt△CEG中,利用勾股定理列方程求出BE=2,S△AFC=S△AEC﹣S△AEF﹣S△EFC代入计算即可.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴AB=AD,∠B=∠D=90°,
    ∵将AB边沿AE折叠到AF,
    ∴AB=AF,∠B=∠AFB=90°,
    在Rt△ABE和Rt△AFB中,

    ∴Rt△ABE≌Rt△AFB(HL),
    ∴BE=EF,
    同理可得:DG=FG,
    ∵点G恰为CD边中点,
    ∴DG=FG=3,
    设BE=x,则CE=6﹣x,EG=3+x,
    在Rt△CEG中,由勾股定理得:
    (x+3)2=32+(6﹣x)2,
    解得x=2,
    ∴BE=EF=2,CE=4,
    ∴S△CEG=×4×3=6,
    ∵EF∶FG=2∶3,
    ∴S△EFC=×6=,
    ∴S△AFC=S△AEC﹣S△AEF﹣S△EFC
    =×4×6﹣×2×6﹣
    =12﹣6﹣
    =3.6.
    故答案为:3.6.
    【点睛】
    本题考查了三角形全等的性质与判定,勾股定理,正方形的性质,根据勾股定理求得BE的长是解题的关键.
    3、9
    【解析】
    【分析】
    根据n边形从一个顶点出发可引出(n-3)条对角线,可组成n-2个三角形,依此可得n的值.
    【详解】
    解:由题意得,n-2=7,
    解得:n=9,
    即这个多边形是九边形.
    故答案为:9.
    【点睛】
    本题考查了多边形的对角线,求对角线条数时,直接代入边数n的值计算,而计算边数时,需利用方程思想,解方程求n.
    4、4+2
    【解析】
    【分析】
    取AD中点G,连接EG,F'G,BE,作BH⊥DC的延长线于点H,利用全等三角形的性质证明∠F'GA=60°,点F'的轨迹为射线GF',易得A、E关于GF'对称,推出AF'=EF',得到BF'+AF'=BF'+EF'≥BE,求出BE即可解决周长最小问题.
    【详解】
    解:取AD中点G,连接EG,F'G,BE,作BH⊥DC的延长线于点H,

    ∵四边形ABCD为菱形,
    ∴AB=AD,
    ∵∠BAD=120°,
    ∴∠CAD=60°,
    ∴△ACD为等边三角形,
    又∵DE=DG,
    ∴△DEG也为等边三角形.
    ∴DE=GE,
    ∵∠DEG=60°=∠FEF',
    ∴∠DEG﹣∠FEG=∠FEF'﹣∠FEG,
    即∠DEF=∠GEF',
    由线段EF绕着点E顺时针旋转60°得到线段EF',
    所以EF=EF'.
    在△DEF和△GEF'中,

    ∴△DEF≌△GEF'(SAS).
    ∴∠EGF'=∠EDF=60°,
    ∴∠F'GA=180°﹣60°﹣60°=60°,
    则点F'的运动轨迹为射线GF'.
    观察图形,可得A,E关于GF'对称,
    ∴AF'=EF',
    ∴BF'+AF'=BF'+EF'≥BE,
    在Rt△BCH中,
    ∵∠H=90°,BC=4,∠BCH=60°,
    ∴,
    在Rt△BEH中,BE===2,
    ∴BF'+EF'≥2,
    ∴△ABF'的周长的最小值为AB+BF'+EF'=4+2,
    故答案为:4+2.
    【点睛】
    本题考查了旋转变换,菱形的性质,解直角三角形,全等三角形的判定与性质,勾股定理,等边三角形等知识,解题关键在于学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题.
    5、20
    【解析】
    【分析】
    根据S▱ABCD=2S△ABC,所以求S△ABC可得解.作BE⊥AC于E,在直角三角形ABE中求BE从而计算S△ABC.
    【详解】
    解:如图,过B作BE⊥AC于E.

    在直角三角形ABE中,
    ∠BAC=30°,AB=5,
    ∴BE=AB=,
    S△ABC=AC•BE=10,
    ∴S▱ABCD=2S△ABC=20(cm2).
    故答案为:20.
    【点睛】
    本题综合考查了平行四边形的性质,含30度的直角三角形的性质等.先求出对角线分成的两个三角形中其中一个的面积,然后再求平行四边形的面积,这样问题就比较简单了.
    三、解答题
    1、 (1)△DCA;
    (2)∠ABO+∠OCE=45°,理由见解析
    (3)
    【解析】
    【分析】
    (1)①由平行线的性质可得∠ACD=∠BOA=90°,再由OB=CA,OA=CD,即可利用SAS证明△AOB≌△DCA;②过点D作DR⊥BO交BO延长线于R,由①可知△AOB≌△DCA,得到CD=OA=2,AC=OB=3,再由OC⊥OB,DR⊥OB,CD∥OB,得到DR=OC=OA+AC=5(平行线间距离相等),同理可得OR=CD=3,即可利用勾股定理得到;
    (2)如图所示,过点C作CW⊥AC,使得CW=OA,连接AW,BW,先证明△AOB≌△WCA得到AB=AW,∠ABO=∠WAC,然后推出∠ABW=∠AWB=45°,证明四边形BECW是平行四边形,得到BW∥CE,则∠WJC=∠BWA=45°,由三角形外角的性质得到∠WJC=∠WAC+∠JCA,则∠ABO+∠OCE=45°;
    (3)如图3-1所示,连接AF,则,如图3-2所示,当A、F、Q三点共线时,AQ有最大值,由此求解即可.
    (1)
    解:①∵CD∥OB,
    ∴∠ACD=∠BOA=90°,
    又∵OB=CA,OA=CD,
    ∴△AOB≌△DCA(SAS);
    故答案为:△DCA;

    ②如图所示,过点D作DR⊥BO交BO延长线于R,
    由①可知△AOB≌△DCA,
    ∴CD=OA=2,AC=OB=3,
    ∵OC⊥OB,DR⊥OB,CD∥OB,
    ∴DR=OC=OA+AC=5(平行线间距离相等),
    同理可得OR=CD=3,
    ∴BR=OB+OR=5,
    ∴;
    故答案为:;

    (2)
    解:∠ABO+∠OCE=45°,理由如下:
    如图所示,过点C作CW⊥AC,使得CW=OA,连接AW,BW,
    在△AOB和△WCA中,

    ∴△AOB≌△WCA(SAS),
    ∴AB=AW,∠ABO=∠WAC,
    ∵∠AOB=90°,
    ∴∠ABO+∠BAO=90°,
    ∴∠BAO+∠WAC=90°,
    ∴∠BAW=90°,
    又∵AB=AW,
    ∴∠ABW=∠AWB=45°,
    ∵BE⊥OC,CW⊥OC,
    ∴BE∥CW,
    又∵BE=OA=CW,
    ∴四边形BECW是平行四边形,
    ∴BW∥CE,
    ∴∠WJC=∠BWA=45°,
    ∵∠WJC=∠WAC+∠JCA,
    ∴∠ABO+∠OCE=45°;

    (3)
    解:如图3-1所示,连接AF,
    ∴,

    ∴如图3-2所示,当A、F、Q三点共线时,AQ有最大值,
    ∵E是OB的中点,BE=OA,
    ∴BE=OE=OA,
    ∴OB=AC=2OA,
    ∵△CFQ是等腰直角三角形,CF=QF,
    ∴∠CFQ=∠CFA=90°,
    ∴,
    ∴,
    ∴.

    【点睛】
    本题主要考查了全等三角形的性质与判定,勾股定理,平行四边形的性质与判定,平行线的性质与判定等等,熟知相关知识是解题的关键.
    2、 (1)见解析
    (2)当AD=AB时,四边形BEDH是正方形
    【解析】
    【分析】
    (1)要证明AF=CG,只要证明△EAF≌△HCG即可;
    (2)利用已知可得四边形BEDH是菱形,所以当AE2+DE2=AD2时,∠BED=90°,四边形BEDH是正方形.
    (1)
    证明:∵四边形ABCD是平行四边形,
    ∴AB∥CD,AB=CD,∠BAD=∠BCD,
    ∴∠AEF=∠CHG,
    ∵BE=2AB,DH=2CD,
    ∴BE=DH,
    ∴BE-AB=DH-DC,
    ∴AE=CH,
    ∴∠BAD+∠EAF=180°,∠BCD+∠GCH=180°,
    ∴∠EAF=∠GCH,
    ∴△EAF≌△HCG(ASA),
    ∴AF=CG;
    (2)
    解:当AD=AB时,四边形BEDH是正方形;
    理由:∵BE∥DH,BE=DH,
    ∴四边形EBHD是平行四边形,
    ∵EH⊥BD,
    ∴四边形EBHD是菱形,
    ∴ED=EB=2AB,
    当AE2+DE2=AD2时,则∠BED=90°,
    ∴四边形BEDH是正方形,即AB2+(2AB)2=AD2,
    ∴AD=AB,
    ∴当AD=AB时,四边形BEDH是正方形.

    【点睛】
    本题考查了正方形的判定,菱形的判定,平行四边形的性质,全等三角形的判定与性质,结合图形分析并熟练掌握正方形的判定,平行四边形的性质,是解题的关键.
    3、 11 见解析
    【解析】
    【分析】
    (1)直接利用勾股定理求出即可;
    (2)首先分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;进而得出答案.
    【详解】
    解:(1)AC2+BC2=()2+32=11;
    故答案为:11;
    (2)分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;
    延长DE交MN于点Q,连接QC,平移QC至AG,BP位置,直线GP分别交AF,BH于点T,S,则四边形ABST即为所求,如图,

    【点睛】
    本题考查了勾股定理,无刻度直尺作图,平行四边形与矩形的性质,掌握勾股定理以及特殊四边形的性质是解题的关键.
    4、 (1)7
    (2)见解析
    【解析】
    【分析】
    (1)根据平行四边形的性质,可得AB∥CD,AB=CD,可得∠EBF=∠CFB,再由∵FB平分,可得∠EFB=∠EBF,从而得到BE=EF=5,即可求解;
    (2)再CF上截取FN=FG,可得,从而得到∠BGF=∠BNF,再由∠GBF=∠EFD,可得到∠BFD=∠BNC,再根据BC⊥BD,∠BCD=45°,可得BC=BD,从而证得△BDF≌△BCN,进而得到NC=FD,即可求证.
    (1)
    解:在中,AB∥CD,AB=CD,
    ∴∠EBF=∠CFB,
    ∵FB平分,
    ∴∠EFB=∠CFB,
    ∴∠EFB=∠EBF,
    ∴BE=EF=5,
    ∵AE=2,
    ∴CD=AB=AE+BE=7;
    (2)
    证明:如图,再CF上截取FN=FG,

    ∵,
    ∴ ,
    ∴∠BGF=∠BNF,
    ∵ ,∠BFG+∠BGF+∠GBF=180°,∠GBF=∠EFD,
    ∴∠BGF=∠BFN,
    ∴∠BFN=∠BNF,
    ∴∠BFD=∠BNC,
    ∵BC⊥BD,
    ∴∠CBD=90°,
    ∵∠BCD=45°,
    ∴∠BDC=∠BCD=45°,
    ∴BC=BD,
    ∴△BDF≌△BCN(AAS),
    ∴NC=FD,
    ∴CD=DF+FN+CN=2FD+FG,
    ∵AB=CD,
    ∴FG+2FD=AB.
    【点睛】
    本题主要考查了平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质,熟练掌握平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质是解题的关键.
    5、20条
    【解析】
    【分析】
    多边形的内角和可以表示成(n-2)•180°,外角和是固定的360°,根据正多边形内角和与外角和的差等于720°,列方程求出正多边形的边数.然后根据n边形共有条对角线,得出此正多边形的所有对角线的条数.
    【详解】
    解:设此正多边形为正n边形.
    由题意得:,
    解得n=8,
    ∴此正多边形所有的对角线条数为:=20.
    答:这个正多边形的所有对角线有20条.
    【点睛】
    此题考查多边形的边数与对角线条数,一元一次方程,解题关键在于掌握多边形内角和公式和外角和,以及对角线条数计算公式..

    相关试卷

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品测试题: 这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品测试题,共35页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    数学八年级下册第二十二章 四边形综合与测试精品复习练习题: 这是一份数学八年级下册第二十二章 四边形综合与测试精品复习练习题,共37页。试卷主要包含了如图,已知矩形ABCD中,R等内容,欢迎下载使用。

    冀教版八年级下册第二十二章 四边形综合与测试精品巩固练习: 这是一份冀教版八年级下册第二十二章 四边形综合与测试精品巩固练习,共30页。试卷主要包含了下列说法正确的是,如图,菱形的对角线等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map