


数学第二十二章 四边形综合与测试精品同步达标检测题
展开八年级数学下册第二十二章四边形定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在给定的正方形中,点从点出发,沿边方向向终点运动, 交于点,以,为邻边构造平行四边形,连接,则的度数的变化情况是( )
A.一直减小 B.一直减小后增大 C.一直不变 D.先增大后减小
2、菱形周长为20,其中一条对角线长为6,则菱形面积是( )
A.48 B.40 C.24 D.12
3、平行四边形ABCD中,若∠A=2∠B,则∠C的度数为( )
A.120° B.60° C.30° D.15°
4、如图,点D,E分别是△ABC边BA,BC的中点,AC=3,则DE的长为( )
A.2 B. C.3 D.
5、如图,四边形ABCD是菱形,对角线AC,BD交于点O,E是边AD的中点,过点E作EF⊥BD,EG⊥AC,点F,G为垂足,若AC=10,BD=24,则FG的长为( )
A. B.8 C. D.
6、如图,在中,,于点D,F在BC上且,连接AF,E为AF的中点,连接DE,则DE的长为( )
A.1 B.2 C.3 D.4
7、六边形对角线的条数共有( )
A.9 B.18 C.27 D.54
8、如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形( )
A.OA=OC,OB=OD B.AB=CD,AO=CO
C.AB=CD,AD=BC D.∠BAD=∠BCD,AB∥CD
9、如图,在中,,于E,DE交AC于点F,M为AF的中点,连接DM,若,则的大小为( ).
A.112° B.108° C.104° D.98°
10、一个多边形从一个顶点引出的对角线条数是4条,这个多边形的边数是( )
A.5 B.6 C.7 D.8
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、长方形纸片按图中方式折叠,其中为折痕,如果折叠后在一条直线上,那么的大小是________度.
2、若一个正多边形的内角和与外角和的度数相等,则此正多边形对称轴条数为______.
3、如图,正方形ABCD中,E是BC边上的一点,连接AE,将AB边沿AE折叠到AF.延长EF交DC于G,点G恰为CD边中点,连接AG,CF,AC.若AB=6,则△AFC的面积为_______.
4、过某个多边形的一个顶点的所有对角线,将这个多边形分成6个三角形,这个多边形是___边形.
5、一个多边形的每个内角都等于120°,则这个多边形的边数是______.
三、解答题(5小题,每小题10分,共计50分)
1、(1)【探究一】如图1,我们可以用不同的算法来计算图形的面积.
①方法1:如果把图1看成一个大正方形,那么它的面积为 ;
②方法2:如果把图1看成是由2个大小不同的正方形和2个大小相同的小长方形组成的图形,那么它的面积为 ;(写成关于a、b的两次三项式)用两种不同的算法计算同一个图形的面积,可以得到等式 .
(2)【探究二】如图2,从一个顶点处引n条射线,请你数一数共有多少个锐角呢?
①方法1:一路往下数,不回头数.
以OA1为边的锐角有∠A1OA2、∠A1OA3、∠A1OA4、…、∠A1OAn,共有(n-1)个;
以OA2为边的锐角有∠A2OA3、∠A2OA4、…、∠A2OAn,共有(n-2)个;
以OA3为边的锐角有∠A3OA4、…、∠A3OAn,共有(n-3)个;
以OAn-1为边的锐角有∠An-1OAn,共有1个;
则图中锐角的总个数是 ;
②方法2:每一条边都能和除它以外的(n-1)条边形成锐角,共有n条边,可形成n(n-1)个锐角,但所有锐角都数了两遍,所以锐角的总个数是 ;
用两种不同的方法数锐角个数,可以得到等式 .
(3)【应用】分别利用【探究一】中得到的等式和【探究二】中运用的思想解决问题.
①计算:19782+20222;
②多边形中连接任意两个不相邻顶点的线段叫做对角线,如五边形共有5条对角线,则十七边形共有 条对角线,n边形共有 条对角线.
2、如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.
(1)试用含t的式子表示AE、AD、DF的长;
(2)如图①,连接EF,求证四边形AEFD是平行四边形;
(3)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.
3、如图,在菱形ABCD中,点E、F分别是边CD、BC的中点
(1)求证:四边形BDEG是平行四边形;
(2)若菱形ABCD的边长为13,对角线AC=24,求EG的长.
4、如图,在平行四边形中,、分别是边、上的点,且,,求证:四边形是矩形
5、如图,正方形ABCD和正方形CEFG,点G在CD上,AB=5,CE=2,T为AF的中点,求CT的长.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据题意,作交的延长线于,证明是的角平分线即可解决问题.
【详解】
解:作交的延长线于,
∵四边形 是正方形,
∴,
,
∵,
∴,,
∴,
∴,
∴,
∵四边形是平行四边形,
∴,,
∵, ,
∴,
∵,.
∴,
∴,,
∴,
∴,
∵,
∴,
∴是的角平分线,
∴点的运动轨迹是的角平分线,
∵,
由图可知,点P从点D开始运动,所以一直减小,
故选:A .
【点睛】
本题考查了正方形的性质、全等三角形的判定和性质、平行四边形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
2、C
【解析】
【分析】
由菱形对角线互相垂直且平分的性质、结合勾股定理解得,继而解得AC的长,最后根据菱形的面积公式解题.
【详解】
解:如图,,
菱形的周长为20,
,
四边形是菱形,
,,,
由勾股定理得,则,
所以菱形的面积.
故选:C.
【点睛】
本题考查菱形的性质、勾股定理等知识,是重要考点,掌握相关知识是解题关键.
3、A
【解析】
【分析】
根据平行四边形的性质得出BCAD,根据平行线的性质推出∠A+∠B=180°,代入求出即可.
【详解】
解:∵四边形ABCD是平行四边形,
∴BCAD,
∴∠A+∠B=180°,
把∠A=2∠B代入得:3∠B=180°,
∴∠B=60°,
∴∠C=120°
故选:A.
【点睛】
本题主要考查对平行四边形的性质,平行线的性质等知识点的理解和掌握,能推出∠A+∠B=180°是解此题的关键.
4、D
【解析】
略
5、A
【解析】
【分析】
由菱形的性质得出OA=OC=5,OB=OD=12,AC⊥BD,根据勾股定理求出AD=13,由直角三角形斜边上的中线等于斜边的一半求出OE=6.5,证出四边形EFOG是矩形,得到EO=GF即可得出答案.
【详解】
解:连接OE,
∵四边形ABCD是菱形,
∴OA=OC=5,OB=OD=12,AC⊥BD,
在Rt△AOD中,AD==13,
又∵E是边AD的中点,
∴OE=AD=×13=6.5,
∵EF⊥BD,EG⊥AC,AC⊥BD,
∴∠EFO=90°,∠EGO=90°,∠GOF=90°,
∴四边形EFOG为矩形,
∴FG=OE=6.5.
故选:A.
【点睛】
本题考查了菱形的性质、矩形的判定与性质、直角三角形斜边上中线定理等知识;熟练掌握菱形的性质和矩形的性质是解题的关键.
6、B
【解析】
【分析】
先求出,再根据等腰三角形的三线合一可得点是的中点,然后根据三角形中位线定理即可得.
【详解】
解:,
,
,
(等腰三角形的三线合一),
即点是的中点,
为的中点,
是的中位线,
,
故选:B.
【点睛】
本题考查了等腰三角形的三线合一、三角形中位线定理,熟练掌握等腰三角形的三线合一是解题关键.
7、A
【解析】
【分析】
n边形对角线的总条数为:(n≥3,且n为整数),由此可得出答案.
【详解】
解:六边形的对角线的条数= =9.
故选:A.
【点睛】
本题考查了多边形的对角线的知识,属于基础题,解答本题的关键是掌握:n边形对角线的总条数为:(n≥3,且n为整数).
8、B
【解析】
略
9、C
【解析】
【分析】
根据平行四边形及垂直的性质可得为直角三角形,再由直角三角形中斜边上的中线等于斜边的一半可得,由等边对等角及三角形外角的性质得出,根据三角形内角和定理即可得出.
【详解】
解:∵四边形ABCD为平行四边形,
∴,
∵,
∴,
∴为直角三角形,
∵M为AF的中点,
∴,
∴,,
∵,
∴,
∴,
∴,
故选:C.
【点睛】
题目主要考查平行四边形的性质,直角三角形中斜边上的中线等于斜边的一半,等边对等角及三角形外角的性质和三角形内角和定理,理解题意,综合运用这些知识点是解题关键.
10、C
【解析】
【分析】
根据从n边形的一个顶点引出对角线的条数为(n-3)条,可得答案.
【详解】
解:∵一个n多边形从某个顶点可引出的对角线条数为(n-3)条,
而题目中从一个顶点引出4条对角线,
∴n-3=4,得到n=7,
∴这个多边形的边数是7.
故选:C.
【点睛】
本题考查了多边形的对角线,从一个顶点引对角线,注意相邻的两个顶点不能引对角线.
二、填空题
1、90
【解析】
【分析】
根据折叠的性质,∠1=∠2,∠3=∠4,利用平角,计算∠2+∠3的度数即可.
【详解】
如图,根据折叠的性质,∠1=∠2,∠3=∠4,
∵∠1+∠2+∠3+∠4=180°,
∴2∠2+2∠3=180°,
∴∠2+∠3=90°,
∴=90°,
故答案为:90.
【点睛】
本题考查了折叠的性质,两个角的和,熟练掌握折叠的性质,灵活运用两个角的和是解题的关键.
2、4
【解析】
【分析】
利用多边形的内角和与外角和公式列出方程,求得多边形的边,再利用正多边形的性质可得答案.
【详解】
解:设多边形的边数为n,
根据题意(n-2)•180°=360°,
解得n=4.
所以正多边形为正方形,
所以这个正多边形有4条对称轴,
故答案为:4.
【点睛】
本题考查了多边形的内角和公式与多边形的外角和定理,解一元一次方程,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°,也考查的正多边形的对称轴的条数.
3、3.6##
【解析】
【分析】
首先通过HL证明Rt△ABE≌Rt△AFB,得BE=EF,同理可得:DG=FG,设BE=x,则CE=6﹣x,EG=3+x,在Rt△CEG中,利用勾股定理列方程求出BE=2,S△AFC=S△AEC﹣S△AEF﹣S△EFC代入计算即可.
【详解】
解:∵四边形ABCD是正方形,
∴AB=AD,∠B=∠D=90°,
∵将AB边沿AE折叠到AF,
∴AB=AF,∠B=∠AFB=90°,
在Rt△ABE和Rt△AFB中,
,
∴Rt△ABE≌Rt△AFB(HL),
∴BE=EF,
同理可得:DG=FG,
∵点G恰为CD边中点,
∴DG=FG=3,
设BE=x,则CE=6﹣x,EG=3+x,
在Rt△CEG中,由勾股定理得:
(x+3)2=32+(6﹣x)2,
解得x=2,
∴BE=EF=2,CE=4,
∴S△CEG=×4×3=6,
∵EF∶FG=2∶3,
∴S△EFC=×6=,
∴S△AFC=S△AEC﹣S△AEF﹣S△EFC
=×4×6﹣×2×6﹣
=12﹣6﹣
=3.6.
故答案为:3.6.
【点睛】
本题考查了三角形全等的性质与判定,勾股定理,正方形的性质,根据勾股定理求得BE的长是解题的关键.
4、八
【解析】
【分析】
根据n边形从一个顶点出发可引出(n-3)条对角线,可组成(n-2)个三角形,依此可得n的值,即得出答案.
【详解】
解:由题意得,n-2=6,
解得:n=8,
故答案为:八.
【点睛】
本题考查了多边形的对角线,解题的关键是熟知一个n边形从一个顶点出发,可将n边形分割成(n-2)个三角形.
5、6
【解析】
【分析】
先求出这个多边形的每一个外角的度数,然后根据任意多边形外角和等于360°,再用360°除以外角的度数,即可得到边数.
【详解】
∵多边形的每一个内角都等于120°,
∴多边形的每一个外角都等于180°-120°=60°,
∴边数n=360°÷60°=6.
故答案为:6.
【点睛】
此题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.
三、解答题
1、(1)①;②;=;(2)①(n-1)+(n-2)+(n-3)+……+1;②;(n-1)+(n-2)+(n-3)+……+1=;(3)①8000968;②119,n(n-3)
【解析】
【分析】
(1)①根据边长为(a+b)的正方形面积公式求解即可;
②利用矩形和正方形的面积公式求解即可;
(2)①根据题中的数据求和即可;
②根据题意求解即可;
(3)①利用(1)的规律求解即可;
②根据n边形从一个顶点出发可引出(n-3)条对角线.从n个顶点出发引出(n-3)条,而每条重复一次,所以n边形对角线的总条数为n(n-3)(n≥3,且n为整数)可得答案.
【详解】
解:(1)①大正方形的面积为;
②由2个大小不同的正方形和2个大小相同的小长方形组成的图形的面积为;
可以得到等式:=;
故答案为:①;②;=;
(2)①图中锐角的总个数是:(n-1)+(n-2)+(n-3)+……+1;
②锐角的总个数是n(n-1);
可以得到等式为(n-1)+(n-2)+(n-3)+……+1=n(n-1);
故答案为:①(n-1)+(n-2)+(n-3)+……+1;②n(n-1);(n-1)+(n-2)+(n-3)+……+1=n(n-1);
(3)①19782+20222=[2000+(-22)]2+(2000+22)2
=20002+(-22)2+2×2000×(-22)+20002+222+2×2000×22
=2×(20002+222)
=2×[4000000+(20+2)2]
=2×[4000000+(202+22+2×20×2)]=8000968;
②一个四边形共有2条对角线,即×4×(4-3)=2;
一个五边形共有5条对角线,即×5×(5-3)=5;
一个六边形共有9条对角线,即×6×(6-3)=9;
……,
一个十七边形共有×17×(17-3)=119条对角线;
一个n边形共有n(n-3)(n≥3,且n为整数)条对角线.
故答案为:119,n(n-3).
【点睛】
本题考查了图形的变化规律,完全平方公式,多边形的对角线,对于这种图形的变化规律的问题,读懂题目信息,找到变化规律是解题的关键.
2、 (1)AE=t,AD=12﹣2t,DF=t
(2)见解析
(3)3,理由见解析
【解析】
【分析】
(1)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;
(2)根据对边平行且相等的四边形是平行四边形证明;
(3)根据矩形的定义列出方程,解方程即可.
(1)
解:由题意得,AE=t,CD=2t,
则AD=AC﹣CD=12﹣2t,
∵DF⊥BC,∠C=30°,
∴DF=CD=t;
(2)
解:∵∠ABC=90°,DF⊥BC,
∴,
∵AE=t,DF=t,
∴AE=DF,
∴四边形AEFD是平行四边形;
(3)
解:当t=3时,四边形EBFD是矩形,
理由如下:∵∠ABC=90°,∠C=30°,
∴AB=AC=6cm,
∵,
∴BE=DF时,四边形EBFD是平行四边形,即6﹣t=t,
解得,t=3,
∵∠ABC=90°,
∴四边形EBFD是矩形,
∴t=3时,四边形EBFD是矩形.
【点睛】
此题考查了30度角的性质,平行四边形的判定及性质,矩形的定义,一元一次方程,三角形与动点问题,熟练掌握四边形的知识并综合应用是解题的关键.
3、 (1)证明见解析
(2)10
【解析】
【分析】
(1)利用AC平分∠BAD,AB∥CD,得到∠DAC=∠DCA,即可得到AD=DC,利用一组对边平行且相等可证明四边形ABCD是平行四边形,再结合AB=AD,即可求证结论;
(2)根据菱形的性质,得到CD=13,AO=CO=12,结合中位线性质,可得四边形BDEG是平行四边形,利用勾股定理即可得到OB、OD的长度,即可求解.
(1)
证明:∵AC平分∠BAD,AB∥CD,
∴∠DAC=∠BAC,∠DCA=∠BAC,
∴∠DAC=∠DCA,
∴AD=DC,
又∵AB∥CD,AB=AD,
∴AB∥CD且AB=CD,
∴四边形ABCD是平行四边形,
∵AB=AD,
∴四边形ABCD是菱形.
(2)
解:连接BD,交AC于点O,如图:
∵菱形ABCD的边长为13,对角线AC=24,
∴CD=13,AO=CO=12,
∵点E、F分别是边CD、BC的中点,
∴EF∥BD(中位线),
∵AC、BD是菱形的对角线,
∴AC⊥BD,OB=OD,
又∵AB∥CD,EF∥BD,
∴DE∥BG,BD∥EG,
∵四边形BDEG是平行四边形,
∴BD=EG,
在△COD中,
∵OC⊥OD,CD=13,CO=12,
∴,
∴EG=BD=10.
【点睛】
本题考查了平行四边形性质判定方法、菱形的判定和性质、等腰三角形性质、勾股定理等知识,关键在于熟悉四边形的判定方法和在题目中找到合适的判定条件.
4、证明见解析
【解析】
【分析】
平行四边形,可知;由于 ,可得,,知四边形为平行四边形,由可知四边形是矩形.
【详解】
证明:∵四边形 是平行四边形
∴
∵
∴
∵
∴四边形为平行四边形
又∵
∴四边形是矩形.
【点睛】
本题考查了平行四边形的性质与判定,矩形的判定等知识.解题的关键在于灵活掌握矩形的判定.
5、
【解析】
【分析】
连接AC,CF,如图,根据正方形的性质得到AC=,AB=5,CF=CE=2,∠ACD=45°,∠GCF=45°,则利用勾股定理得到AF=,然后根据直角三角形斜边上的中线性质得到CT的长.
【详解】
解:连接AC、CF,如图,
∵四边形ABCD和四边形CEFG都是正方形,
∴AC=AB=5,CF=CE=2,∠ACD=45°,∠GCF=45°,
∴∠ACF=45°+45°=90°,
在Rt△ACF中,
∵T为AF的中点,
∴,
∴CT的长为.
【点睛】
本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质,也考查了直角三角形斜边上的中线性质.
冀教版八年级下册第二十章 函数综合与测试课后测评: 这是一份冀教版八年级下册第二十章 函数综合与测试课后测评,共24页。
冀教版八年级下册第二十二章 四边形综合与测试优秀巩固练习: 这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀巩固练习,共25页。
冀教版八年级下册第二十二章 四边形综合与测试精品同步达标检测题: 这是一份冀教版八年级下册第二十二章 四边形综合与测试精品同步达标检测题,共31页。试卷主要包含了如图,E等内容,欢迎下载使用。