|试卷下载
终身会员
搜索
    上传资料 赚现金
    精品试题冀教版八年级数学下册第二十二章四边形同步测试试题(含详细解析)
    立即下载
    加入资料篮
    精品试题冀教版八年级数学下册第二十二章四边形同步测试试题(含详细解析)01
    精品试题冀教版八年级数学下册第二十二章四边形同步测试试题(含详细解析)02
    精品试题冀教版八年级数学下册第二十二章四边形同步测试试题(含详细解析)03
    还剩25页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中第二十二章 四边形综合与测试精品达标测试

    展开
    这是一份初中第二十二章 四边形综合与测试精品达标测试,共28页。试卷主要包含了下列命题不正确的是,已知锐角∠AOB,如图.等内容,欢迎下载使用。

    八年级数学下册第二十二章四边形同步测试

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是(      

    A.5 B.4 C.7 D.6

    2、在锐角△ABC中,∠BAC=60°,BNCM为高,PBC的中点,连接MNMPNP,则结论:①NPMP;②ANABAMAC;③BN=2AN;④当∠ABC=60°时,MNBC,一定正确的有(      

    A.①②③ B.②③④ C.①②④ D.①④

    3、在中,若,则的度数是(      

    A. B. C. D.

    4、在RtABC中,∠B=90°,DEF分别是边BCCAAB的中点,AB=6,BC=8,则四边形AEDF的周长是(      

    A.18 B.16 C.14 D.12

    5、如图,DE的中位线,若,则BC的长为(   )

    A.8 B.7 C.6 D.7.5

    6、下列命题不正确的是(      

    A.三边对应相等的两三角形全等

    B.若,则

    C.有一组对边平行、另一组对边相等的四边形是平行四边形

    D.的三边为abc,若,则是直角三角形.

    7、下面性质中,平行四边形不一定具备的是(  )

    A.对角互补 B.邻角互补

    C.对角相等 D.对角线互相平分

    8、已知锐角∠AOB,如图.

    (1)在射线OA上取一点C,以点O为圆心,OC长为半径画弧,交射线OB于点D,连接CD

    (2)分别以点CD为圆心,CD长为半径作弧,两弧交于点P,连接CPDP

    (3)作射线OPCD于点Q

    根据以上作图过程及所作图形,下列结论中错误的是(   )

    A.四边形OCPD是菱形 B.CP=2QC

    C.∠AOP=∠BOP D.CDOP

    9、将一张长方形纸片按如图所示的方式折叠,BDBE为折痕,则∠EBD的度数(    

    A.80° B.90° C.100° D.110°

    10、如图,已知正方形的边长为4,是对角线上一点,于点于点,连接.给出下列结论:①;②四边形的周长为8;③;④的最小值为;⑤;⑥.其中正确结论有几个(    

    A.3 B.4 C.5 D.6

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、两组对边分别________的四边形叫做平行四边形.

    2、如图,在平行四边形ABCD中,对角线ACBD交于点OACABAB,且ACBD=2:3,那么AC的长为___.

    3、如图1,在平面直角坐标系xOy中,□ABCD的面积为10,且边ABx轴上.如果将直线y=﹣x沿x轴正方向平移,在平移过程中,记该直线在x轴上平移的距离为m,直线被平行四边形的边所截得的线段的长度为n,且nm的对应关系如图2所示,那么图2中a的值是 ___,b的值是 ___.

    4、如图,,矩形的顶点分别在边上,当在边上运动时,随之在上运动,矩形的形状保持不变,其中.在运动过程中:

    (1)斜边中线的长度是否发生变化___(填“是”或“否”);

    (2)点到点的最大距离是___.

    5、如图,在平行四边形中,是对角线,,点的中点,平分于点,连接.已知,则的长为_______.

    三、解答题(5小题,每小题10分,共计50分)

    1、如图,直线,线段分别与直线交于点、点,满足

    (1)使用尺规完成基本作图:作线段的垂直平分线交于点,交于点,交线段于点,连接.(保留作图痕迹,不写做法,不下结论)

    (2)求证:四边形为菱形.(请补全下面的证明过程)

    证明:

    ____①____

    垂直平分

    ∴____②____

    ____③____

    ∴四边形是___④_____

    ∴四边形是菱形(______⑤__________)(填推理的依据).

    2、如图,在中,于点E,延长BC至点F,使,连接AFDEDF

    (1)求证:四边形AEFD为矩形;

    (2)若,求DF的长.

    3、已知:在平行四边形ABCD中,分别延长BADC到点EH,使得BE=2ABDH=2CD.连接EH,分别交ADBC于点FG

    (1)求证:AFCG

    (2)连接BDEH于点O,若EHBD,则当线段AB与线段AD满足什么数量关系时,四边形BEDH是正方形?

    4、如图,把矩形ABCD绕点A按逆时针方向旋转得到矩形AEFG,使点E落在对角线BD上,连接DGDF

    (1)若∠BAE=50°,求∠DGF的度数;

    (2)求证:DFDC

    5、如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.

    (1)计算AC2+BC2的值等于_____;

    (2)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明)_____.

     

    -参考答案-

    一、单选题

    1、D

    【解析】

    【分析】

    利用多边形内角和公式和外角和定理,列出方程即可解决问题.

    【详解】

    解:根据题意,得:(n-2)×180=360×2,

    解得n=6.

    故选:D.

    【点睛】

    本题考查了多边形内角与外角,解答本题的关键是根据多边形内角和公式和外角和定理,利用方程法求边数.

    2、C

    【解析】

    【分析】

    利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.

    【详解】

    CMBN分别是高

    ∴△CMB、△BNC均是直角三角形

    ∵点PBC的中点

    PMPN分别是两个直角三角形斜边BC上的中线

    故①正确

    ∵∠BAC=60゜

    ∴∠ABN=∠ACM=90゜−∠BAC=30゜

    AB=2ANAC=2AM

    ANAB=AMAC=1:2

    即②正确

    RtABN中,由勾股定理得:

    故③错误

    当∠ABC=60゜时,△ABC是等边三角形

    CMABBNAC

    MN分别是ABAC的中点

    MN是△ABC的中位线

    MNBC

    故④正确

    即正确的结论有①②④

    故选:C

    【点睛】

    本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.

    3、B

    【解析】

    【分析】

    利用平行四边形的对角相等即可选择正确的选项.

    【详解】

    解:四边形是平行四边形,

    故选:B.

    【点睛】

    本题考查了平行四边形的性质,解题的关键是记住平行四边形的性质,属于中考基础题.

    4、B

    【解析】

    5、A

    【解析】

    【分析】

    已知DE的中位线,,根据中位线定理即可求得BC的长.

    【详解】

    的中位线,

    故选:A.

    【点睛】

    此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半;掌握中位线定理是解题的关键.

    6、C

    【解析】

    【分析】

    根据三角形全等的判定定理(定理)、乘方运算法则、平行四边形的判定、勾股定理的逆定理逐项判断即可得.

    【详解】

    解:A、三边对应相等的两三角形全等,此命题正确,不符题意;

    B、若,则,此命题正确,不符题意;

    C、有一组对边平行、另一组对边相等的四边形有可能是等腰梯形,不一定是平行四边形,所以此项命题不正确,符合题意;

    D、的三边为,若,即,则是直角三角形,此命题正确,不符题意;

    故选:C.

    【点睛】

    本题考查了三角形全等的判定定理、乘方运算法则、平行四边形的判定、勾股定理的逆定理,熟练掌握各定理是解题关键.

    7、A

    【解析】

    【分析】

    直接利用平行四边形的性质:对角相等、对角线互相平分、对边平行且相等,进而分析得出即可.

    【详解】

    解:A、平行四边形对角不一定互补,故符合题意;

    B、平行四边形邻角互补正确,故不符合题意;

    C、平行四边形对角相等正确,故不符合题意.

    D、平行四边形的对角线互相平分正确,故不符合题意;

    故选A.

    【点睛】

    此题主要考查了平行四边形的性质,熟练掌握相关性质是解题关键.

    8、A

    【解析】

    【分析】

    根据作图信息可以判断出OP平分,由此可以逐一判断即可.

    【详解】

    解:由作图可知,平分

    OP垂直平分线段CD

    ∴∠AOP=∠BOPCDOP

    故选项CD正确;

    由作图可知,

    是等边三角形,

    OP垂直平分线段CD

    CP=2QC

    故选项B正确,不符合题意;

    由作图可知,,不能确定四边形OCPD是菱形,故选项A符合题意,

    故选:A

    【点睛】

    本题考查了基本作图,解题的关键是熟练掌握作图的依据.

    9、B

    【解析】

    【分析】

    根据翻折的性质可知,∠ABE=∠ABE,∠DBC=∠DBC′,又∠ABE+∠ABE+∠DBC+∠DBC′=180°,且∠EBD=∠ABE+∠DBC′,继而即可求出答案.

    【详解】

    解:根据翻折的性质可知,∠ABE=∠ABE,∠DBC=∠DBC′,

    又∵∠ABE+∠ABE+∠DBC+∠DBC′=180°,

    ∴∠EBD=∠ABE+∠DBC′=180°×=90°.

    故选B

    【点睛】

    此题考查翻折变换的性质,三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠ABE,∠DBC=∠DBC′是解题的关键.

    10、D

    【解析】

    【分析】

    如图,过点于点,连接,可说明四边形为矩形,是等腰直角三角形,;①中可得为等腰直角三角形,进而求,由于四边形是平行四边形,,故可知;②四边形为矩形,进而可求矩形的周长;③证明,由全等可知,进而可说明;④最小时,最小,即时,最小,计算即可;⑤在中,勾股定理求得将线段等量替换求解即可;⑥如图1,延长交于点,证明,得进而可说明

    【详解】

    解:如图,过点于点,连接

    由题意知

    ∴四边形为平行四边形

    ∴四边形为矩形

    是等腰直角三角形

    ①∵

    为等腰直角三角形

    ∴四边形是平行四边形

    正确;

    ②∵

    ∴四边形为矩形

    四边形的周长

    正确;

    四边形为矩形

    ∵在

    正确;

    最小时,最小

    ∴当时,即时,的最小值等于

    正确;

    中,

    正确;

    ⑥如图1,延长交于点

     

    ∵在

    正确;

    综上,①②③④⑤⑥正确,

    故选:

    【点睛】

    本题考查了正方形,矩形的判定与性质,勾股定理,等腰直角三角形,三角形全等.解题的关键在于对知识的灵活综合运用.

    二、填空题

    1、平行

    【解析】

    2、4

    【解析】

    【分析】

    四边形是平行四边形,可得,由,可知,由可知在中勾股定理求解的值,进而求解的值.

    【详解】

    解:∵四边形是平行四边形

    ∴设

    解得:

    故答案为:4.

    【点睛】

    本题考查了勾股定理,平行四边形的性质等知识.解题的关键在于正确的求解.

    3、     7    

    【解析】

    【分析】

    在图1中,过点DBC作直线与已知直线y=﹣x平行,交x轴于点EF,过DDGx轴于G,在图2中,取A'(2,0),E'(5,b),B'(ab),F'(10,0),求出OAm=2,OEm=5,DEnb,则AE=3,OFm=10,OBma,根据ABCD的面积为10,求出DG=2,得到DE即为b值.

    【详解】

    解:在图1中,过点DBC作直线与已知直线y=﹣x平行,交x轴于点EF,过DDGx轴于G

    在图2中,取A'(2,0),E'(5,b),B'(ab),F'(10,0),

    图1中点A对应图2中的点A',得出OAm=2,

    图1中点E对应图2中的点E',得出OEm=5,DEnb,则AE=3,

    图1中点F对应图2中的点F',得出OFm=10,

    图1中点B对应图2中的点B',得出OBma

    aOBOFBFBFAE=3,OF=10

    a=7,

    ABCD的面积为10,ABOBOA=7﹣2=5,

    DG=2,

    在RtDGE中,∠DEG=45°,

    DE=

    故答案是:7,

    【点睛】

    此题考查了平行四边形与函数图象的结合,正确掌握平行四边形的性质,直线y=﹣x与坐标轴夹角45度的性质,一次函数图象平行的性质,勾股定理,正确理解函数图象得到相关信息是解题的关键.

    4、         

    【解析】

    【分析】

    (1)设斜边中点为,根据直角三角形斜边中线即可;

    (2)取的中点,连接,根据三角形的任意两边之和大于第三边可知当Q三点共线时,点到点的距离最大,再根据勾股定理列式求出的长,根据直角三角形斜边上的中线等于斜边的一半求出的长,两者相加即可得解.

    【详解】

    解:(1)如图,设斜边中点为,在运动过程中,斜边中线

    长度不变,故不变,

    故答案为:否;

    (2)连接,在矩形的运动过程当中,根据三角形的任意两边之和大于第三边有

    三点共线时,则有,此时,取得最大值,如图所示,

    中点,

    故答案为:

    【点睛】

    本题考查了直角三角形斜边上的中线等于斜边的一半得到性质,三角形的三边关系,矩形的性质,勾股定理,根据三角形的三边关系判断出点Q三点共线时,点到点的距离最大是解题的关键.

    5、##3.5##

    【解析】

    【分析】

    延长ABCF交于点H,由“ASA”可证△AFH≌△AFC,可得AC=AH=12,HF=CF,由三角形中位线定理可求解.

    【详解】

    解:如图,延长交于点

    四边形是平行四边形,

    平分

    中,

    的中点,

    EF是△CBH的中位线,

    故答案为:

    【点睛】

    本题考查了平行四边形的性质,全等三角形的判定和性质,勾股定理,三角形中位线等知识,添加恰当辅助线构造全等三角形是本题的关键.

    三、解答题

    1、 (1)见解析

    (2)①;②;③;④平行四边形;⑤对角线互相垂直的平行四边形是菱形

    【解析】

    【分析】

    (1)分别以AD为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1E,交l2F,直线EF为线段AD的垂直平分线,连接即可;

    (2):根据,内错角相等得出∠2①,根据垂直平分       ,得出,可证②EOC,根据全等三角形性质得出OF③,再证,根据对角线互相平分的四边形是平行四边形判定四边形是平行四边形④,根据对角线互相垂直即可得出四边形是菱形(对角线互相垂直的平行四边形是菱形⑤).

    (1)

    解:分别以AD为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1E,交l2F,直线EF为线段AD的垂直平分线,连接即可;

    如图所示

    (2)

    证明:

    ∠2①,

    垂直平分      

    ∴②EOC

    OF③,

    ∴四边形是平行四边形④,

    ∴四边形是菱形(对角线互相垂直的平行四边形是菱形⑤),

    故答案为:①;②;③;④平行四边形;⑤对角线互相垂直的平行四边形是菱形.

    【点睛】

    本题考查尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定,掌握尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定是解题关键.

    2、 (1)见解析

    (2)

    【解析】

    【分析】

    (1)根据线段的和差关系可得BCEF,根据平行四边形的性质可得ADBCADBC,即可得出ADEF,可证明四边形AEFD为平行四边形,根据AEBC即可得结论;

    (2)根据矩形的性质可得AFDE,可得△BAF为直角三角形,利用“面积法”可求出AE的长,即可得答案.

    (1)

    BECF

    BE+CECF+CE,即BCEF

    ABCD是平行四边形,

    ADBCADBC

    ADEF

    ADEF

    ∴四边形AEFD为平行四边形,

    AEBC

    ∴∠AEF=90°,

    ∴四边形AEFD为矩形.

    (2)

    ∵四边形AEFD为矩形,

    AFDE=4,DF=AE

    AB2+AF2BF2

    ∴△BAF为直角三角形,∠BAF=90°,

    AE=

    【点睛】

    本题考查平行四边形的性质、矩形的判定与性质及勾股定理的逆定理,熟练掌握相关性质及判定定理是解题关键.

    3、 (1)见解析

    (2)当AD=AB时,四边形BEDH是正方形

    【解析】

    【分析】

    (1)要证明AF=CG,只要证明△EAF≌△HCG即可;

    (2)利用已知可得四边形BEDH是菱形,所以当AE2+DE2=AD2时,∠BED=90°,四边形BEDH是正方形.

    (1)

    证明:∵四边形ABCD是平行四边形,

    ABCDAB=CD,∠BAD=∠BCD

    ∴∠AEF=∠CHG

    BE=2ABDH=2CD

    BE=DH

    BE-AB=DH-DC

    AE=CH

    ∴∠BAD+∠EAF=180°,∠BCD+∠GCH=180°,

    ∴∠EAF=∠GCH

    ∴△EAF≌△HCG(ASA),

    AF=CG

    (2)

    解:当AD=AB时,四边形BEDH是正方形;

    理由:∵BEDHBE=DH

    ∴四边形EBHD是平行四边形,

    EHBD

    ∴四边形EBHD是菱形,

    ED=EB=2AB

    AE2+DE2=AD2时,则∠BED=90°,

    ∴四边形BEDH是正方形,即AB2+(2AB)2=AD2

    AD=AB

    ∴当AD=AB时,四边形BEDH是正方形.

    【点睛】

    本题考查了正方形的判定,菱形的判定,平行四边形的性质,全等三角形的判定与性质,结合图形分析并熟练掌握正方形的判定,平行四边形的性质,是解题的关键.

    4、 (1)∠DGF=25°;

    (2)见解析

    【解析】

    【分析】

    (1)由旋转的性质得出AB=AEAD=AG,∠BAD=∠EAG=∠AGF=90°,由等腰三角形的性质及三角形内角和定理可得出答案;

    (2)证出四边形ABDF是平行四边形,由平行四边形的性质可得出结论.

    (1)

    解:由旋转得AB=AEAD=AG,∠BAD=∠EAG=∠AGF=90°,

    ∴∠BAE=∠DAG=50°,

    ∴∠AGD=∠ADG==65°,

    ∴∠DGF=90°-65°=25°;

    (2)

    证明:连接AF

    由旋转得矩形AEFG≌矩形△ABCD

    AF=BD,∠FAE=∠ABE=∠AEB

    AFBD

    ∴四边形ABDF是平行四边形,

    DF=AB=DC

    【点睛】

    本题考查了矩形的性质,全等三角形的判定和性质,旋转的性质,平行四边形的判定与性质,等腰三角形的性质,熟记矩形的性质并准确识图是解题的关键.

    5、     11     见解析

    【解析】

    【分析】

    (1)直接利用勾股定理求出即可;

    (2)首先分别以ACBCAB为一边作正方形ACED,正方形BCNM,正方形ABHF;进而得出答案.

    【详解】

    解:(1)AC2+BC2=(2+32=11;

    故答案为:11;

    (2)分别以ACBCAB为一边作正方形ACED,正方形BCNM,正方形ABHF

    延长DEMN于点Q,连接QC,平移QCAGBP位置,直线GP分别交AFBH于点TS,则四边形ABST即为所求,如图,

    【点睛】

    本题考查了勾股定理,无刻度直尺作图,平行四边形与矩形的性质,掌握勾股定理以及特殊四边形的性质是解题的关键.

     

    相关试卷

    2020-2021学年第二十二章 四边形综合与测试精品课时练习: 这是一份2020-2021学年第二十二章 四边形综合与测试精品课时练习,共29页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    冀教版八年级下册第二十二章 四边形综合与测试精品同步练习题: 这是一份冀教版八年级下册第二十二章 四边形综合与测试精品同步练习题,共34页。试卷主要包含了下列说法正确的是,下列关于的叙述,正确的是等内容,欢迎下载使用。

    2020-2021学年第二十二章 四边形综合与测试优秀课时练习: 这是一份2020-2021学年第二十二章 四边形综合与测试优秀课时练习,共28页。试卷主要包含了六边形对角线的条数共有等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map