终身会员
搜索
    上传资料 赚现金
    精品试卷冀教版八年级数学下册第二十二章四边形达标测试试题(含答案解析)
    立即下载
    加入资料篮
    精品试卷冀教版八年级数学下册第二十二章四边形达标测试试题(含答案解析)01
    精品试卷冀教版八年级数学下册第二十二章四边形达标测试试题(含答案解析)02
    精品试卷冀教版八年级数学下册第二十二章四边形达标测试试题(含答案解析)03
    还剩26页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀课后练习题

    展开
    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀课后练习题,共29页。试卷主要包含了如图,在正方形ABCD中,点E,如图,已知矩形ABCD中,R等内容,欢迎下载使用。

    八年级数学下册第二十二章四边形达标测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列多边形中,内角和与外角和相等的是(  )
    A. B. C. D.
    2、在下列条件中,不能判定四边形是平行四边形的是( )
    A.AB∥CD,AD∥BC B.AB=CD,AD=BC
    C.AB ∥CD,AB=CD D.AB∥CD,AD=BC
    3、若一个正多边形的每个内角度数都为108°,则这个正多边形的边数是 (  )
    A.5 B.6 C.8 D.10
    4、如图,平面直角坐标系xOy中,点A是直线上一动点,将点A向右平移1个单位得到点B,点C(1,0),则OB+CB的最小值为( )

    A. B. C. D.
    5、如图,已知长方形,,分别是,上的点,,分别是,的中点,当点在上从点向点移动,而点不动时,那么下列结论成立的是( )

    A.线段的长逐渐增大 B.线段的长逐渐减少
    C.线段的长不变 D.线段的长先增大后变小
    6、如图,在正方形ABCD中,点E、点F分别在AD、CD上,且AE=DF,若四边形OEDF的面积是1,OA的长为1,则正方形的边长AB为(  )

    A.1 B.2 C. D.2
    7、下列选项中,不能被边长为2的正方形及其内部所覆盖的图形是( )
    A.长度为的线段 B.边长为2的等边三角形
    C.斜边为2的直角三角形 D.面积为4的菱形
    8、如图,菱形OABC的边OA在平面直角坐标系中的x轴上,,,则点C的坐标为( )

    A. B. C. D.
    9、如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是( )

    A.线段EF的长逐渐增大 B.线段EF的长逐渐减小
    C.线段EF的长不改变 D.线段EF的长不能确定
    10、平行四边形ABCD中,若∠A=2∠B,则∠C的度数为(  )
    A.120° B.60° C.30° D.15°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在平面直角坐标系xOy中,有一边长为1的正方形OABC,点B在x轴的正半轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,…,照此规律作下去,则B2的坐标是 ___;B2020的坐标是 ___.

    2、三角形的各边长分别是8、10、12、则连接各边中点所得的三角形的周长是___.
    3、如图,在矩形ABCD中,,,E、F分别是边AB、BC上的动点,且,M为EF中点,P是边AD上的一个动点,则的最小值是______.

    4、平行四边形的判定方法:
    (1)两组对边分别______的四边形是平行四边形
    (2)两组对边分别______的四边形是平行四边形
    (3)两组对角分别______的四边形是平行四边形
    (4)对角线______的四边形是平行四边形
    (5)一组对边______的四边形是平行四边形
    5、如图,平行四边形ABCD中,BD为对角线,,BE平分交DC于点E,连接AE,若,则为______度.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,直线,线段分别与直线、交于点、点,满足.

    (1)使用尺规完成基本作图:作线段的垂直平分线交于点,交于点,交线段于点,连接、、、.(保留作图痕迹,不写做法,不下结论)
    (2)求证:四边形为菱形.(请补全下面的证明过程)
    证明:
    ____①____
    垂直平分

    ∴____②____
    ____③____



    ∴四边形是___④_____

    ∴四边形是菱形(______⑤__________)(填推理的依据).
    2、如图,把矩形ABCD绕点A按逆时针方向旋转得到矩形AEFG,使点E落在对角线BD上,连接DG,DF.

    (1)若∠BAE=50°,求∠DGF的度数;
    (2)求证:DF=DC.
    3、如图,在中,,,E、F分别为AB、CD边上两点,FB平分.

    (1)如图1,若,,求CD的长;
    (2)如图2,若G为EF上一点,且,求证:.
    4、已知:线段m.
    求作:矩形ABCD,使矩形宽AB=m,对角线AC=m.

    5、如图1,已知∠ACD是ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即:三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?

    (1)尝试探究:如图2,已知:∠DBC与∠ECB分别为ABC的两个外角,则∠DBC+∠ECB-∠A 180°.(横线上填<、=或>)
    (2)初步应用:如图3,在ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案:∠P= .
    (3)解决问题:如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠BAD、∠CDA的数量关系.

    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可得解.
    【详解】
    解:设所求多边形的边数为n,根据题意得:
    (n-2)•180°=360°,
    解得n=4.
    故选:B.
    【点睛】
    本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.
    2、D
    【解析】

    3、A
    【解析】
    【分析】
    先求出多边形的每一个外角的度数,再利用多边形的外角和即可求出答案.
    【详解】
    解:∵多边形的每一个内角都等于108°,多边形的内角与外角互为邻补角,
    ∴每个外角是:180°−108°=72°,
    ∴多边形中外角的个数是360°÷72°=5,则多边形的边数是5.
    故选:A.
    【点睛】
    本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟练掌握的内容.
    4、A
    【解析】
    【分析】
    设D(﹣1,0),作D点关于直线的对称点E,连接OE,交直线于A,连接AD,,作ES⊥x轴于S,根据题意OE就是OB+CB的最小值,由直线的解析式求得F的坐标,进而求得ED的长,从而求得OS和ES,然后根据勾股定理即可求得OE.
    【详解】
    解:设D(﹣1,0),作D点关于直线的对称点E,连接OE,交直线于A,连接AD,,交于点,作ES⊥x轴于S,

    ∵AB∥DC,且AB=OD=OC=1,
    ∴四边形ABOD和四边形ABCO是平行四边形,
    ∴AD=OB,OA=BC,
    ∴AD+OA=OB+BC,
    ∵AE=AD,
    ∴AE+OA=OB+BC,
    即OE=OB+BC,
    ∴OB+CB的最小值为OE,
    由,
    当时,,
    解得:,


    当时,,



    取的中点,过作轴的垂线交于,


    当时,,



    为的中点,

    为等边三角形,




    ∴FD=3,∠FDG=60°,
    ∴DG=DF=,
    ∴DE=2DG=3,
    ∴ES=DE=,DS=DE=,
    ∴OS=,
    ∴OE==,
    ∴OB+CB的最小值为,
    故选:A.
    【点睛】
    本题考查了一次函数的性质,轴对称﹣最短路线问题以及平行四边形的性质、勾股定理的应用,解题的关键是证得OE是OB+CB的最小值.
    5、C
    【解析】
    【分析】
    因为R不动,所以AR不变.根据三角形中位线定理可得EF=AR,因此线段EF的长不变.
    【详解】
    解:连接.

    、分别是、的中点,
    为的中位线,
    ,为定值.
    线段的长不改变.
    故选:.
    【点睛】
    本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
    6、C
    【解析】
    【分析】
    根据正方形的性质得到AB=AD,∠BAE=∠ADF=90°,根据全等三角形的性质得到∠ABE=∠DAF,求得∠AOB=90°,根据三角形的面积公式得到OA=1,由勾股定理即可得到答案.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴AB=AD,∠BAE=∠ADF=90°,
    在△ABE与△DAF中,

    ∴△ABE≌△DAF(SAS),
    ∴∠ABE=∠DAF,
    ∴∠ABE+∠BAO=∠DAF+∠BAO=90°,
    ∴∠AOB=90°,
    ∵△ABE≌△DAF,
    ∴S△ABE=S△DAF,
    ∴S△ABE-S△AOE=S△DAF-S△AOE,
    即S△ABO=S四边形OEDF=1,
    ∵OA=1,
    ∴BO=2,
    ∴AB=,
    故选:C.
    【点睛】
    本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,证得△ABE≌△DAF是解题的关键.
    7、D
    【解析】
    【分析】
    先计算出正方形的对角线长,即可逐项进行判定求解.
    【详解】
    解:A、正方形的边长为2,
    对角线长为,
    长度为的线段能被边长为2的正方形及其内部所覆盖,故不符合题意;
    B、边长为2的等边三角形能被边长为2的正方形及其内部所覆盖,故不符合题意;
    C、斜边为2的直角三角形能被边长为2的正方形及其内部所覆盖,故不符合题意;
    D、而面积为4的菱形对角线长可以为8,故不能被边长为2的正方形及其内部所覆盖,故符合题意,
    故选:D.
    【点睛】
    本题主要考查正方形的性质,等边三角形的性质,菱形的性质等知识,解题的关键是掌握相关图形的特征进行判断.
    8、A
    【解析】
    【分析】
    如图:过C作CE⊥OA,垂足为E,然后求得∠OCE=30°,再根据含30°角直角三角形的性质求得OE,最后运用勾股定理求得CE即可解答.
    【详解】
    解:如图:过C作CE⊥OA,垂足为E,
    ∵菱形OABC,
    ∴OC=OA=4
    ∵,
    ∴∠OCE=30°
    ∵OC=4
    ∴OE=2
    ∴CE=
    ∴点C的坐标为.
    故选A.

    【点睛】
    本题主要考查了菱形的性质、含30°直角三角形的性质、勾股定理等知识点,作出辅助线、求出OE、CE的长度是解答本题的关键.
    9、C
    【解析】
    【分析】
    因为R不动,所以AR不变.根据中位线定理,EF不变.
    【详解】
    解:连接AR.

    因为E、F分别是AP、RP的中点,
    则EF为的中位线,
    所以,为定值.
    所以线段的长不改变.
    故选:C.
    【点睛】
    本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
    10、A
    【解析】
    【分析】
    根据平行四边形的性质得出BCAD,根据平行线的性质推出∠A+∠B=180°,代入求出即可.
    【详解】
    解:∵四边形ABCD是平行四边形,

    ∴BCAD,
    ∴∠A+∠B=180°,
    把∠A=2∠B代入得:3∠B=180°,
    ∴∠B=60°,
    ∴∠C=120°
    故选:A.
    【点睛】
    本题主要考查对平行四边形的性质,平行线的性质等知识点的理解和掌握,能推出∠A+∠B=180°是解此题的关键.
    二、填空题
    1、
    【解析】
    【分析】
    根据已知条件和勾股定理求出OB2的长度即可求出B2的坐标,再根据题意和图形可看出每经过一次变化,正方形都逆时针旋转45°,正方形的边长都乘以所以可求出从B到B2020变化的坐标.
    【详解】
    解:∵四边形OABC是边长为1正方形,


    ∴B1的坐标是,
    ∴,
    ∴B2的坐标是
    根据题意和图形可看出每经过一次变化,正方形逆时针旋转45°,其边长乘以,
    ∴B3的坐标是
    ∴B4的坐标是
    ∴旋转8次则OB旋转一周,
    ∵从B到B2020经过了2020次变化,2020÷8=252…4,
    ∴从B到B2020与B4都在x轴负半轴上,
    ∴点B2020的坐标是
    【点睛】
    本题主要考查了规律型-点的坐标,解决本题的关键是利用正方形的变化过程寻找点的变化规律.
    2、15
    【解析】
    【分析】
    由中点和中位线定义可得新三角形的各边长为原三角形各边长的一半,即可求其周长.
    【详解】
    解:如图,D,E,F分别是△ABC的三边的中点,
    则DE=AC,DF=BC,EF=AB,
    ∴△DEF的周长=DE+DF+EF=(AC+BC+AB)=×(8+10+12)cm=15cm.
    故答案为15.

    【点睛】
    本题考查了三角形的中位线定理,熟记三角形的中位线平行于第三边并且等于第三边的一半可得中点三角形的周长等于原三角形的周长的一半是解题的关键.
    3、11
    【解析】
    【分析】
    作点C关于AD的对称点G,连接PG、GD、BM、GB,则当点P、M在线段BG上时,GP+PM+BM最小,从而 CP+PM最小,在Rt△BCG中由勾股定理即可求得BG的长,从而求得最小值.
    【详解】
    如图,作点C关于AD的对称点G,连接PG、GD、BM、GB

    由对称的性质得:PC=PG,GD=CD
    ∵GP+PM+BM≥BG
    ∴CP+PM=GP+PM≥BG-BM
    则当点P、M在线段BG上时,CP+PM最小,且最小值为线段BG-BM
    ∵四边形ABCD是矩形
    ∴CD=AB=6,∠BCD=∠ABC=90°
    ∴CG=2CD=12
    ∵M为线段EF的中点,且EF=4

    在Rt△BCG中,由勾股定理得:
    ∴GM=BG-BM=13-2=11
    即CP+PM的最小值为11.
    【点睛】
    本题是求两条线段和的最小值问题,考查了矩形性质,折叠的性质,直角三角形斜边上中线的性质,两点间线段最短,勾股定理等知识,有一定的综合性,关键是作点C关于AD的对称点及连接BM,GP+PM+BM的最小值转化为线段CP+PM的最小值.
    4、 平行 相等 相等 互相平分 平行且相等
    【解析】

    5、22
    【解析】
    【分析】
    先根据平行四边形的性质可得,从而可得,再根据等边三角形的判定证出是等边三角形,根据等边三角形的性质可得,从而可得,然后根据三角形全等的判定定理证出,最后根据全等三角形的性质即可得.
    【详解】
    解:平行四边形中,,



    平分,

    是等边三角形,


    在和中,,


    故答案为:22.
    【点睛】
    本题考查了平行四边形的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,正确找出两个全等三角形是解题关键.
    三、解答题
    1、 (1)见解析
    (2)①;②;③;④平行四边形;⑤对角线互相垂直的平行四边形是菱形
    【解析】
    【分析】
    (1)分别以A、D为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1于E,交l2于F,直线EF为线段AD的垂直平分线,连接、、、即可;
    (2):根据,内错角相等得出∠2①,根据垂直平分 ,得出,,可证②△EOC,根据全等三角形性质得出OF③,再证,根据对角线互相平分的四边形是平行四边形判定四边形是平行四边形④,根据对角线互相垂直即可得出四边形是菱形(对角线互相垂直的平行四边形是菱形⑤).
    (1)
    解:分别以A、D为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1于E,交l2于F,直线EF为线段AD的垂直平分线,连接、、、即可;
    如图所示

    (2)
    证明:,
    ∠2①,
    垂直平分 ,
    ,,
    ∴②△EOC,
    OF③,



    ∴四边形是平行四边形④,

    ∴四边形是菱形(对角线互相垂直的平行四边形是菱形⑤),
    故答案为:①;②;③;④平行四边形;⑤对角线互相垂直的平行四边形是菱形.
    【点睛】
    本题考查尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定,掌握尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定是解题关键.
    2、 (1)∠DGF=25°;
    (2)见解析
    【解析】
    【分析】
    (1)由旋转的性质得出AB=AE,AD=AG,∠BAD=∠EAG=∠AGF=90°,由等腰三角形的性质及三角形内角和定理可得出答案;
    (2)证出四边形ABDF是平行四边形,由平行四边形的性质可得出结论.
    (1)
    解:由旋转得AB=AE,AD=AG,∠BAD=∠EAG=∠AGF=90°,
    ∴∠BAE=∠DAG=50°,
    ∴∠AGD=∠ADG==65°,
    ∴∠DGF=90°-65°=25°;
    (2)
    证明:连接AF,

    由旋转得矩形AEFG≌矩形△ABCD,
    ∴AF=BD,∠FAE=∠ABE=∠AEB,
    ∴AF∥BD,
    ∴四边形ABDF是平行四边形,
    ∴DF=AB=DC.
    【点睛】
    本题考查了矩形的性质,全等三角形的判定和性质,旋转的性质,平行四边形的判定与性质,等腰三角形的性质,熟记矩形的性质并准确识图是解题的关键.
    3、 (1)7
    (2)见解析
    【解析】
    【分析】
    (1)根据平行四边形的性质,可得AB∥CD,AB=CD,可得∠EBF=∠CFB,再由∵FB平分,可得∠EFB=∠EBF,从而得到BE=EF=5,即可求解;
    (2)再CF上截取FN=FG,可得,从而得到∠BGF=∠BNF,再由∠GBF=∠EFD,可得到∠BFD=∠BNC,再根据BC⊥BD,∠BCD=45°,可得BC=BD,从而证得△BDF≌△BCN,进而得到NC=FD,即可求证.
    (1)
    解:在中,AB∥CD,AB=CD,
    ∴∠EBF=∠CFB,
    ∵FB平分,
    ∴∠EFB=∠CFB,
    ∴∠EFB=∠EBF,
    ∴BE=EF=5,
    ∵AE=2,
    ∴CD=AB=AE+BE=7;
    (2)
    证明:如图,再CF上截取FN=FG,

    ∵,
    ∴ ,
    ∴∠BGF=∠BNF,
    ∵ ,∠BFG+∠BGF+∠GBF=180°,∠GBF=∠EFD,
    ∴∠BGF=∠BFN,
    ∴∠BFN=∠BNF,
    ∴∠BFD=∠BNC,
    ∵BC⊥BD,
    ∴∠CBD=90°,
    ∵∠BCD=45°,
    ∴∠BDC=∠BCD=45°,
    ∴BC=BD,
    ∴△BDF≌△BCN(AAS),
    ∴NC=FD,
    ∴CD=DF+FN+CN=2FD+FG,
    ∵AB=CD,
    ∴FG+2FD=AB.
    【点睛】
    本题主要考查了平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质,熟练掌握平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质是解题的关键.
    4、见详解
    【解析】
    【分析】
    先作m的垂直平分线,取m的一半为AB,然后以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,利用作一个角等于已知角,过A作BC的平行线AD,过C作AB的平行线CD,两线交于D即可.
    【详解】
    解:先作m的垂直平分线,取m的一半为AB,
    以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,
    过A作BC的平行线,与过C作AB的平行线交于D,
    则四边形ABCD为所求作矩形;

    ∵AD∥BC,CD∥AB,
    ∴四边形ABCD为平行四边形,
    ∵BC⊥AB,
    ∴∠ABC=90°,
    ∴四边形ABCD为矩形,
    ∵AB=,AC=m,
    ∴矩形的宽与对角线满足条件,
    ∴四边形ABCD为所求作矩形.
    【点睛】
    本题考查矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法,掌握矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法是解题关键.
    5、 (1)=
    (2)∠P=90°-∠A
    (3)∠P=180°-∠BAD-∠CDA,探究见解析
    【解析】
    【分析】
    (1)根据三角形外角的性质得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,两式相加可得结论;
    (2)根据角平分线的定义得:∠CBP=∠DBC,∠BCP=∠ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°−∠A;
    (3)根据平角的定义得:∠EBC=180°-∠1,∠FCB=180°-∠2,由角平分线得:∠3=∠EBC=90°−∠1,∠4=∠FCB=90°−∠2,相加可得:∠3+∠4=180°−(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.
    (1)
    ∠DBC+∠ECB-∠A=180°,
    理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,
    ∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,
    ∴∠DBC+∠ECB-∠A=180°,
    故答案为:=;
    (2)
    ∠P=90°-∠A,
    理由是:∵BP平分∠DBC,CP平分∠ECB,
    ∴∠CBP=∠DBC,∠BCP=∠ECB,
    ∵△BPC中,∠P=180°-∠CBP-∠BCP=180°-(∠DBC+∠ECB),
    ∵∠DBC+∠ECB=180°+∠A,
    ∴∠P=180°-(180°+∠A)=90°-∠A.
    故答案为:∠P=90°-∠A,
    (3)
    ∠P=180°-∠BAD-∠CDA,
    理由是:如图,

    ∵∠EBC=180°-∠1,∠FCB=180°-∠2,
    ∵BP平分∠EBC,CP平分∠FCB,
    ∴∠3=∠EBC=90°-∠1,∠4=∠FCB=90°-∠2,
    ∴∠3+∠4=180°-(∠1+∠2),
    ∵四边形ABCD中,∠1+∠2=360°-(∠BAD+∠CDA),
    又∵△PBC中,∠P=180°-(∠3+∠4)=(∠1+∠2),
    ∴∠P=×[360°-(∠BAD+∠CDA)]=180°-(∠BAD+∠CDA)=180°-∠BAD-∠CDA.
    【点睛】
    本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,熟练掌握三角形外角的性质是关键.

    相关试卷

    数学八年级下册第二十二章 四边形综合与测试优秀同步训练题: 这是一份数学八年级下册第二十二章 四边形综合与测试优秀同步训练题,共26页。试卷主要包含了下列说法不正确的是,已知等内容,欢迎下载使用。

    2020-2021学年第二十二章 四边形综合与测试优秀课时练习: 这是一份2020-2021学年第二十二章 四边形综合与测试优秀课时练习,共28页。试卷主要包含了六边形对角线的条数共有等内容,欢迎下载使用。

    数学八年级下册第二十二章 四边形综合与测试精品综合训练题: 这是一份数学八年级下册第二十二章 四边形综合与测试精品综合训练题,共33页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map