|试卷下载
终身会员
搜索
    上传资料 赚现金
    精品试卷冀教版八年级数学下册第二十二章四边形专题测试试题(含详细解析)
    立即下载
    加入资料篮
    精品试卷冀教版八年级数学下册第二十二章四边形专题测试试题(含详细解析)01
    精品试卷冀教版八年级数学下册第二十二章四边形专题测试试题(含详细解析)02
    精品试卷冀教版八年级数学下册第二十二章四边形专题测试试题(含详细解析)03
    还剩25页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第二十二章 四边形综合与测试优秀课时练习

    展开
    这是一份2020-2021学年第二十二章 四边形综合与测试优秀课时练习,共28页。试卷主要包含了六边形对角线的条数共有等内容,欢迎下载使用。

    八年级数学下册第二十二章四边形专题测试

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、如图,菱形OABC的边OA在平面直角坐标系中的x轴上,,则点C的坐标为(      

    A. B. C. D.

    2、一多边形的每一个内角都等于它相邻外角的4倍,则该多边形的内角和是(  )

    A.360° B.900° C.1440° D.1800°

    3、如图,在正方形ABCD中,对角线ACBD相交于点OEBC上一点,CE=6,FDE的中点.若OF的长为1,则△CEF的周长为(      

    A.14 B.16 C.18 D.12

    4、如图,在中,于点DFBC上且,连接AFEAF的中点,连接DE,则DE的长为(      

    A.1 B.2 C.3 D.4

    5、六边形对角线的条数共有(      

    A.9 B.18 C.27 D.54

    6、如图,平行四边形ABCD的边BC上有一动点E,连接DE,以DE为边作矩形DEGF且边FG过点A.在点E从点B移动到点C的过程中,矩形DEGF的面积(  )

    A.先变大后变小 B.先变小后变大 C.一直变大 D.保持不变

    7、如图,菱形ABCD的面积为24cm2,对角线BD长6cm,点OBD的中点,过点AAEBCCB的延长线于点E,连接OE,则线段OE的长度是(      

    A.3cm B.4cm C.4.8cm D.5cm

    8、一个多边形的每个内角均为150°,则这个多边形是(      

    A.九边形 B.十边形 C.十一边形 D.十二边形

    9、如图,把一长方形纸片ABCD的一角沿AE折叠,点D的对应点落在∠BAC内部.若,且,则∠DAE的度数为(      

    A.12° B.24° C.39° D.45°

    10、如图,在正方形ABCD中,AB=3,点EF分别在边ABCD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B′恰好落在AD边上,则BE的长度为(      

    A.1 B. C. D.2

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、从八边形的一个顶点引出的对角线有_____条.

    2、如图,在中,,射线AF的平分线,交BC于点D,过点BAB的垂线与射线AF交于点E,连结CEMDE的中点,连结BM并延长与AC的延长线交于点G.则下列结论正确的是______.

           BG垂直平分DE                          

    3、如图,在平面直角坐标系xOy中,菱形ABCD的顶点Dx轴上,边BCy轴上,若点A的坐标为(12,13),则点C的坐标是___.

    4、如图,在矩形ABCD中,EF分别是边ABBC上的动点,且MEF中点,P是边AD上的一个动点,则的最小值是______.

    5、四边形ABCD中,ADBC,要使它平行四边形,需要增加条件________(只需填一个 条件即可).

    三、解答题(5小题,每小题10分,共计50分)

    1、已知正多边形的内角和比外角和大720°,求该正多边形所有对角线的条数.

    2、如图,在矩形ABCD中,

    (1)尺规作图(不写作法,保留作图痕迹):作对角线BD的垂直平分线EF分别交ADBCEF点,交BDO点.

    (2)在(1)的条件下,求证:AE=CF

    3、如图,已知平行四边形ABCD

    (1)用尺规完成以下基本作图:在CB上截取CE,使CECD,连接DE,作∠ABC的平分线BFAD于点F.(保留作图痕迹,不写作法)

    (2)在(1)所作的图形中,证明四边形BEDF为平行四边形.

    4、如图,正方形ABCD中,EBD上一点,AE的延长线交BC的延长线于点F,交CD于点HGFH的中点.

    (1)求证:AE=CE

    (2)猜想线段AEEGGF之间的数量关系,并证明.

    5、(1)【发现证明】

    如图1,在正方形中,点分别是边上的动点,且,求证:.小明发现,当把绕点顺时针旋转90°至,使重合时能够证明,请你给出证明过程.

    (2)【类比引申】

    ①如图2,在正方形中,如果点分别是延长线上的动点,且,则(1)中的结论还成立吗?若不成立,请写出之间的数量关系______(不要求证明)

    ②如图3,如果点分别是延长线上的动点,且,则之间的数量关系是______(不要求证明)

    (3)【联想拓展】如图1,若正方形的边长为6,,求的长.

     

    -参考答案-

    一、单选题

    1、A

    【解析】

    【分析】

    如图:过CCEOA,垂足为E,然后求得∠OCE=30°,再根据含30°角直角三角形的性质求得OE,最后运用勾股定理求得CE即可解答.

    【详解】

    解:如图:过CCEOA,垂足为E

    ∵菱形OABC,

    OC=OA=4

    ∴∠OCE=30°

    OC=4

    OE=2

    CE=

    ∴点C的坐标为.

    故选A.

    【点睛】

    本题主要考查了菱形的性质、含30°直角三角形的性质、勾股定理等知识点,作出辅助线、求出OECE的长度是解答本题的关键.

    2、C

    【解析】

    【分析】

    设每一个外角都为x,则相邻的内角为4x,然后根据“邻补角和为180°”列方程求得外角的大小,然后再根据多边形外角和定理求得多边形边数,最后运用多边形内角和公式求解即可.

    【详解】

    解:设每一个外角都为x,则相邻的内角为4x

    由题意得,4x+x=180°,

    解得:x=36°,

    多边形的外角和为360°,

    360°÷36°=10,

    所以这个多边形的边数为10,

    则该多边形的内角和是:(10﹣8)×180=1440°.

    故选:C

    【点睛】

    本题主要考查了多边形内角和相邻外角的关系、多边形的外角和、多边形内角和等知识点,掌握多边形的外角和为360°是解答本题的关键.

    3、B

    【解析】

    【分析】

    根据中位线的性质及直角三角形斜边上中线的性质可得:,结合图形得出的周长为,再由中位线的性质得出,在中,利用勾股定理确定,即可得出结论.

    【详解】

    解:在正方形ABCD中,

    FDE的中点,OBD的中点,

    OF的中位线且CF斜边上的中线,

    的周长为

    中,

    的周长为

    故选:B

    【点睛】

    题目主要考查正方形的性质,三角形中位线的性质,勾股定理,直角三角形斜边中线的性质等,理解题意,熟练掌握运用各个知识点是解题关键.

    4、B

    【解析】

    【分析】

    先求出,再根据等腰三角形的三线合一可得点的中点,然后根据三角形中位线定理即可得.

    【详解】

    解:

    (等腰三角形的三线合一),

    即点的中点,

    的中点,

    的中位线,

    故选:B.

    【点睛】

    本题考查了等腰三角形的三线合一、三角形中位线定理,熟练掌握等腰三角形的三线合一是解题关键.

    5、A

    【解析】

    【分析】

    n边形对角线的总条数为:n≥3,且n为整数),由此可得出答案.

    【详解】

    解:六边形的对角线的条数= =9.

    故选:A.

    【点睛】

    本题考查了多边形的对角线的知识,属于基础题,解答本题的关键是掌握:n边形对角线的总条数为:n≥3,且n为整数).

    6、D

    【解析】

    【分析】

    连接AE,根据,推出,由此得到答案.

    【详解】

    解:连接AE

    故选:D.

    【点睛】

    此题考查了平行四边形的性质,矩形的性质,正确连接辅助线AE是解题的关键.

    7、B

    【解析】

    【分析】

    由菱形的性质得出BD=6cm,由菱形的面积得出AC=8cm,再由直角三角形斜边上的中线等于斜边的一半即可得出结果.

    【详解】

    解:∵四边形ABCD是菱形,

    BDAC

    BD=6cm,S菱形ABCDAC×BD=24cm2

    AC=8cm,

    AEBC

    ∴∠AEC=90°,

    OEAC=4cm,

    故选:B.

    【点睛】

    本题主要考查了菱形的性质、直角三角形斜边上的中线性质;熟练掌握菱形的性质是解题的关键.

    8、D

    【解析】

    【分析】

    先求出多边形的外角度数,然后即可求出边数.

    【详解】

    解:∵多边形的每个内角都等于150°,

    ∴多边形的每个外角都等于180°-150°=30°,

    ∴边数n=360°÷30°=12,

    故选:D.

    【点睛】

    本题考查多边形的内角和、外角来求多边形的边数,属于基础题,熟练掌握多边形中内角和定理公式是解决本类题的关键.

    9、C

    【解析】

    【分析】

    由折叠的性质得到,由长方形的性质得到,根据角的和差倍分得到,整理得 ,最后根据解题.

    【详解】

    解:折叠,

    是矩形

    故选:C.

    【点睛】

    本题考查角的计算、折叠性质、数形结合思想等知识,是重要考点,掌握相关知识是解题关键.

    10、D

    【解析】

    【分析】

    由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=xAE=3-x,由直角三角形的性质可得:2(3-x)=x,解方程求出x即可得出答案.

    【详解】

    解:∵四边形ABCD是正方形,

    ABCD,∠A=90°,

    ∴∠EFD=∠BEF=60°,

    ∵将四边形EBCF沿EF折叠,点B'恰好落在AD边上,

    ∴∠BEF=∠FEB'=60°,BE=B'E

    ∴∠AEB'=180°-∠BEF-∠FEB'=60°,

    B'E=2AE

    BE=x,则B'E=xAE=3-x

    ∴2(3-x)=x

    解得x=2.

    故选:D.

    【点睛】

    本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.

    二、填空题

    1、

    【解析】

    【分析】

    根据n边形从一个顶点出发可引出(n﹣3)条对角线可直接得到答案.

    【详解】

    解:从八边形的一个顶点可引出的对角线的条数有8﹣3=5(条),

    故答案为:5.

    【点睛】

    此题主要考查了多边形的对角线,关键是掌握计算方法.

    2、①②⑤

    【解析】

    【分析】

    先由题意得到∠ABE=∠ACB=∠BCG=90°,∠BAC=45°,再由角平分线的性质得到∠BAE=∠DAC=22.5°,从而推出∠BEA=∠ADC,则∠BDE=∠BED,再由三线合一定理即可证明BMDE,∠GBE=∠DBG,即可判断②;得到∠MAG+∠MGA=90°,再由∠CBG+∠CGB=90°,可得∠DAC=∠GBC=22.5°,则∠GBE=22.5°,2∠GBE=45°,从而可证明△ACD≌△BCG,即可判断①;则CD=CG,再由AC=BC=BD+CD,可得到AC=BE+CG,即可判断⑤;由∠G=180°-∠BCG-∠CBG=67.5°,即可判断④;延长BEAC延长线于G,先证△ABH是等腰直角三角形,得到CAH的中点,然后证BEHE,即E不是BH的中点,得到CE不是△ABH的中位线,则CEAB不平行,即可判断③.

    【详解】

    解:∵∠ACB=90°,BEABAC=BC

    ∴∠ABE=∠ACB=∠BCG=90°,∠BAC=45°,

    ∴∠BAE+∠BEA=90°,∠DAC+∠ADC=90°,

    AF平分∠BAC

    ∴∠BAE=∠DAC=22.5°,

    ∴∠BEA=∠ADC

    又∵∠ADC=∠BDE

    ∴∠BDE=∠BED

    BD=ED

    又∵MDE的中点,

    BMDE,∠GBE=∠DBG

    BG垂直平分DE,∠AMG=90°,故②正确,

    ∴∠MAG+∠MGA=90°,

    ∵∠CBG+∠CGB=90°,

    ∴∠DAC=∠GBC=22.5°,

    ∴∠GBE=22.5°,

    ∴2∠GBE=45°,

    又∵AC=BC

    ∴△ACD≌△BCGASA),故①正确;

    CD=CG

    AC=BC=BD+CD

    AC=BE+CG,故⑤正确;

    ∵∠G=180°-∠BCG-∠CBG=67.5°,

    ∴∠G≠2∠GBE,故④错误;

    如图所示,延长BEAC延长线于G

    ∵∠ABH=∠ABC+∠CBH=90°,∠BAC=45°,

    ∴△ABH是等腰直角三角形,

    BCAH

    CAH的中点,

    ABAHAF是∠BAH的角平分线,

    BEHE,即E不是BH的中点,

    CE不是△ABH的中位线,

    CEAB不平行,

    BECE不垂直,故③错误;

    故答案为:①②⑤.

    【点睛】

    本题主要考查了全等三角形的性质与判定,等腰三角形的性质与判定,三角形中位线定理,三角形内角和定理,熟知等腰三角形的性质与判定条件是解题的挂件.

    3、(0,-5)

    【解析】

    【分析】

    RtODC中,利用勾股定理求出OC即可解决问题.

    【详解】

    解:∵A(12,13),

    OD=12,AD=13,

    ∵四边形ABCD是菱形,

    CD=AD=13,

    RtODC中,

    C(0,-5).

    故答案为:(0,-5)

    【点睛】

    本题考查菱形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.

    4、11

    【解析】

    【分析】

    作点C关于AD的对称点G,连接PGGDBMGB,则当点PM在线段BG上时,GP+PM+BM最小,从而 CP+PM最小,在RtBCG中由勾股定理即可求得BG的长,从而求得最小值.

    【详解】

    如图,作点C关于AD的对称点G,连接PGGDBMGB

    由对称的性质得:PC=PGGD=CD

    GP+PM+BMBG

    CP+PM=GP+PMBGBM

    则当点PM在线段BG上时,CP+PM最小,且最小值为线段BGBM

    ∵四边形ABCD是矩形

    CD=AB=6,∠BCD=∠ABC=90°  

    CG=2CD=12

    M为线段EF的中点,且EF=4

    RtBCG中,由勾股定理得:

    GM=BGBM=13-2=11

    CP+PM的最小值为11.

    【点睛】

    本题是求两条线段和的最小值问题,考查了矩形性质,折叠的性质,直角三角形斜边上中线的性质,两点间线段最短,勾股定理等知识,有一定的综合性,关键是作点C关于AD的对称点及连接BMGP+PM+BM的最小值转化为线段CP+PM的最小值.

    5、AD=BC

    【解析】

    三、解答题

    1、20条

    【解析】

    【分析】

    多边形的内角和可以表示成(n-2)•180°,外角和是固定的360°,根据正多边形内角和与外角和的差等于720°,列方程求出正多边形的边数.然后根据n边形共有条对角线,得出此正多边形的所有对角线的条数.

    【详解】

    解:设此正多边形为正n边形.

    由题意得:

    解得n=8,

    ∴此正多边形所有的对角线条数为:=20.

    答:这个正多边形的所有对角线有20条.

    【点睛】

    此题考查多边形的边数与对角线条数,一元一次方程,解题关键在于掌握多边形内角和公式和外角和,以及对角线条数计算公式..

    2、 (1)见解析

    (2)见解析

    【解析】

    【分析】

    (1)利用尺规作出图形即可.

    (2)利用全等三角形的性质证明即可.

    (1)

    解:如图,直线EF即为所求作.

    (2)

    证明:在矩形ABCD中,AD=BC,∠ADB=∠DBC

    EFBD的垂直平分线,

    ∴∠EOD=∠FOB=90°,OB=OD

    在△EOD与△FOB中,

    ∴△EOD≌△FOBASA),

    ED=BF

    AD-ED=BC-BF,即AE=CF

    【点睛】

    本题考查了作图-复杂作图,线段的垂直平分线,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.

    3、 (1)见解析

    (2)见解析

    【解析】

    【分析】

    (1)延长CBE使CECD,然后作∠ABC的平分线交AD的延长线于F

    (2)先根据平行四边形的性质得到ADBCABCDADBC,则CEAB,再证明∠ABF=∠F得到ABAF,然后证明BEDF,从而可判断四边形BEDF为平行四边形.

    (1)

    如图,DEBF为所作;

    (2)

    证明:∵四边形ABCD为平行四边形,

    ADBCABCDADBC

    CECD

    CEAB

    BF平分∠ABC

    ∴∠ABF=∠CBF

    AFBC

    ∴∠CBF=∠F

    ∴∠ABF=∠F

    ABAF

    CEAF,即CBBEADDF

    BEDF

    BEDF

    ∴四边形BEDF为平行四边形.

    【点睛】

    本题考查了作线段,作角平分线,平行四边形的性质与判定,掌握以上知识是解题的关键.

    4、 (1)见解析

    (2)AE2+ GF2=EG2,证明见解析

    【解析】

    【分析】

    (1)根据“SAS”证明△ADE≌△CDE即可;

    (2)连接CG,可得CG=GF=GH=FH,再证明∠ECG=90°,然后在RtCEG中,可得CE2+CG2=EG2,进而可得线段AEEGGF之间的数量关系.

    (1)

    证明:∵四边形ABCD是正方形,

    AD=CD,∠ADE=∠CDE

    在△ADE和△CDE

    ∴△ADE≌△CDE

    AE=CE

    (2)

    AE2+ GF2=EG2,理由:

    连接CG

    ∵△ADE≌△CDE

    ∴∠1=∠2.

    GFH的中点,

    CG=GF=GH=FH

    ∴∠6=∠7.

    ∵∠5=∠6,

    ∴∠5=∠7.

    ∵∠1+∠5=90°,

    ∴∠2+∠7=90°,即∠ECG=90°,

    RtCEG中,CE2+CG2=EG2

    AE2+ GF2=EG2

    【点睛】

    本题考查了正方形的性质,全等三角形的判定与性质,直角三角形的性质,以及勾股定理等知识,证明△ADE≌△CDE是解(1)的关键,证明∠ECG=90°是解(2)的关键.

    5、(1)见解析;(2)①不成立,结论:;②,见解析;(3)

    【解析】

    【分析】

    (1)证明,可得出,则结论得证;

    (2)①将绕点顺时针旋转根据可证明,可得,则结论得证;②将绕点逆时针旋转,证明,可得出,则结论得证;

    (3)求出,设,则,在中,得出关于的方程,解出则可得解.

    【详解】

    (1)证明:把绕点顺时针旋转,如图1,

    三点共线,

    (2)①不成立,结论:

    证明:如图2,将绕点顺时针旋转

    ②如图3,将绕点逆时针旋转

    故答案为:

    (3)解:由(1)可知

    正方形的边长为6,

    ,则

    中,

    解得:

    【点睛】

    本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.

     

    相关试卷

    2020-2021学年第二十二章 四边形综合与测试精品课时练习: 这是一份2020-2021学年第二十二章 四边形综合与测试精品课时练习,共29页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    冀教版八年级下册第二十二章 四边形综合与测试精品同步练习题: 这是一份冀教版八年级下册第二十二章 四边形综合与测试精品同步练习题,共34页。试卷主要包含了下列说法正确的是,下列关于的叙述,正确的是等内容,欢迎下载使用。

    初中数学第二十二章 四边形综合与测试精品课时练习: 这是一份初中数学第二十二章 四边形综合与测试精品课时练习,共28页。试卷主要包含了下列关于的叙述,正确的是,如图,在正方形ABCD中,点E等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map