搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新冀教版八年级数学下册第二十二章四边形定向攻克试题(无超纲)

    2021-2022学年最新冀教版八年级数学下册第二十二章四边形定向攻克试题(无超纲)第1页
    2021-2022学年最新冀教版八年级数学下册第二十二章四边形定向攻克试题(无超纲)第2页
    2021-2022学年最新冀教版八年级数学下册第二十二章四边形定向攻克试题(无超纲)第3页
    还剩27页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学第二十二章 四边形综合与测试精品练习题

    展开

    这是一份数学第二十二章 四边形综合与测试精品练习题,共30页。
    八年级数学下册第二十二章四边形定向攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、在下列条件中,不能判定四边形是平行四边形的是( )
    A.AB∥CD,AD∥BC B.AB=CD,AD=BC
    C.AB ∥CD,AB=CD D.AB∥CD,AD=BC
    2、六边形对角线的条数共有( )
    A.9 B.18 C.27 D.54
    3、将图1所示的长方形纸片对折后得到图2,图2再对折后得到图3,沿图3中的虚线剪下并展开,所得的四边形是(  )

    A.矩形 B.菱形 C.正方形 D.梯形
    4、如图,在△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BCF都是等边三角形,下列结论中:①AB⊥AC;②四边形AEFD是平行四边形;③∠DFE=150°;④S四边形AEFD=8.错误的个数是(  )

    A.1个 B.2个 C.3个 D.4个
    5、如图,在中,,于E,DE交AC于点F,M为AF的中点,连接DM,若,则的大小为( ).

    A.112° B.108° C.104° D.98°
    6、如图,已知长方形,,分别是,上的点,,分别是,的中点,当点在上从点向点移动,而点不动时,那么下列结论成立的是( )

    A.线段的长逐渐增大 B.线段的长逐渐减少
    C.线段的长不变 D.线段的长先增大后变小
    7、如图.在长方形纸片ABCD中,AB=12,AD=20,所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.点P,Q分别在边AB、AD上移动,则点A′在BC边上可移动的最大距离为( )

    A.8 B.10 C.12 D.16
    8、如图,2002年8月在北京召开的国际数学家大会会标其原型是我国古代数学家赵爽的《勾股弦图》,它是由四个全等的直角三角形拼接而成,如果大正方形的面积是18,直角三角形的直角边长分别为a、b,且a2+b2=ab+10,那么小正方形的面积为( )

    A.2 B.3 C.4 D.5
    9、一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是( )
    A.5 B.4 C.7 D.6
    10、如图①,在▱ABCD中,动点P从点B出发,沿折线B→C→D→B运动,设点P经过的路程为x,△ABP的面积为y,y是x的函数,函数的图象如图②所示,则图②中的a值为(  )

    A.3 B.4 C.14 D.18
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,菱形中,,,点在边上,且,动点在边上,连接,将线段绕点顺时针旋转至线段,连接,则线段长的最小值为__.

    2、如图所示,过六边形的顶点的所有对角线可将六边形分成_______个三角形.

    3、已知平行四边形ABCD的周长是30,若AB=10,则BC=________.
    4、将矩形纸片ABCD(AB<BC)沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图1);再沿过点E的直线折叠,使点D落在BE上的点D'处,折痕为EG(如图2):再展开纸片(如图3),则图3中∠FEG的大小是__.

    5、如图,在长方形中,,,、分别在边、上,且.现将四边形沿折叠,点,的对应点分别为点,,当点恰好落在边上时,则的长为______.

    三、解答题(5小题,每小题10分,共计50分)
    1、在平面直角坐标系中,已知点,,,以点,,为顶点的平行四边形有三个,记第四个顶点分别为,,,如图所示.

    (1)若,则点,,的坐标分别是(  ),(  ),(  );
    (2)若△是以为底的等腰三角形,
    ①直接写出的值;
    ②若直线与△有公共点,求的取值范围.
    (3)若直线与△有公共点,求的取值范围.
    2、(1)【探究一】如图1,我们可以用不同的算法来计算图形的面积.

    ①方法1:如果把图1看成一个大正方形,那么它的面积为 ;
    ②方法2:如果把图1看成是由2个大小不同的正方形和2个大小相同的小长方形组成的图形,那么它的面积为 ;(写成关于a、b的两次三项式)用两种不同的算法计算同一个图形的面积,可以得到等式 .
    (2)【探究二】如图2,从一个顶点处引n条射线,请你数一数共有多少个锐角呢?
    ①方法1:一路往下数,不回头数.
    以OA1为边的锐角有∠A1OA2、∠A1OA3、∠A1OA4、…、∠A1OAn,共有(n-1)个;
    以OA2为边的锐角有∠A2OA3、∠A2OA4、…、∠A2OAn,共有(n-2)个;
    以OA3为边的锐角有∠A3OA4、…、∠A3OAn,共有(n-3)个;
    以OAn-1为边的锐角有∠An-1OAn,共有1个;
    则图中锐角的总个数是 ;
    ②方法2:每一条边都能和除它以外的(n-1)条边形成锐角,共有n条边,可形成n(n-1)个锐角,但所有锐角都数了两遍,所以锐角的总个数是 ;
    用两种不同的方法数锐角个数,可以得到等式 .
    (3)【应用】分别利用【探究一】中得到的等式和【探究二】中运用的思想解决问题.
    ①计算:19782+20222;
    ②多边形中连接任意两个不相邻顶点的线段叫做对角线,如五边形共有5条对角线,则十七边形共有 条对角线,n边形共有 条对角线.
    3、如图,平行四边形ABCD中,∠ADB=90°.

    (1)求作:AB的垂直平分线MN,交AB于点M,交BD延长线于点N(要求:尺规作图,保留作图痕迹,不写作法,不下结论)
    (2)在(1)的条件下,设直线MN交AD于E,且∠C=22.5°,求证:NE=AB.
    4、如图,在中,于点E,延长BC至点F,使,连接AF,DE,DF.

    (1)求证:四边形AEFD为矩形;
    (2)若,,,求DF的长.
    5、如图,正方形ABCD和正方形CEFG,点G在CD上,AB=5,CE=2,T为AF的中点,求CT的长.


    -参考答案-
    一、单选题
    1、D
    【解析】

    2、A
    【解析】
    【分析】
    n边形对角线的总条数为:(n≥3,且n为整数),由此可得出答案.
    【详解】
    解:六边形的对角线的条数= =9.
    故选:A.
    【点睛】
    本题考查了多边形的对角线的知识,属于基础题,解答本题的关键是掌握:n边形对角线的总条数为:(n≥3,且n为整数).
    3、B
    【解析】
    【分析】
    根据操作过程可还原展开后的纸片形状,并判断其属于什么图形.
    【详解】

    展得到的图形如上图,
    由操作过程可知:AB=CD,BC=AD,
    ∴四边形ABCD是平行四边形,
    ∵AC⊥BD,
    ∴四边形ABCD为菱形,
    故选:B.
    【点睛】
    本题考查平行四边形的判定,和菱形的判定,拥有良好的空间想象能力是解决本题的关键.
    4、A
    【解析】
    【分析】
    利用勾股定理逆定理证得△ABC是直角三角形,由此判断①;证明△ABC≌△DBF得到DF=AE,同理可证:△ABC≌△EFC,得到EF=AD,由此判断②;由②可判断③;过A作AG⊥DF于G,求出AG即可求出 S▱AEFD,判断④.
    【详解】
    解:∵AB=3,AC=4,32+42=52,
    ∴AB2+AC2=BC2,
    ∴△ABC是直角三角形,∠BAC=90°,
    ∴AB⊥AC,故①正确;
    ∵△ABD,△ACE都是等边三角形,
    ∴∠DAB=∠EAC=60°,
    ∴∠DAE=150°,
    ∵△ABD和△FBC都是等边三角形,
    ∴BD=BA,BF=BC,
    ∴∠DBF=∠ABC,
    在△ABC与△DBF中,

    ∴△ABC≌△DBF(SAS),
    ∴AC=DF=AE=4,
    同理可证:△ABC≌△EFC(SAS),
    ∴AB=EF=AD=3,
    ∴四边形AEFD是平行四边形,故②正确;
    ∴∠DFE=∠DAE=150°,故③正确;
    过A作AG⊥DF于G,如图所示:
    则∠AGD=90°,
    ∵四边形AEFD是平行四边形,
    ∴∠FDA=180°﹣∠DFE=180°﹣150°=30°,
    ∴AG=AD=,
    ∴S▱AEFD=DF•AG=4×=6;故④错误;
    ∴错误的个数是1个,
    故选:A.

    【点睛】
    此题考查了等边三角形的性质,勾股定理的逆定理,全等三角形的判定及性质,平行四边形的判定及性质,直角三角形的30度角的性质,熟练掌握各知识点是解题的关键.
    5、C
    【解析】
    【分析】
    根据平行四边形及垂直的性质可得为直角三角形,再由直角三角形中斜边上的中线等于斜边的一半可得,由等边对等角及三角形外角的性质得出,根据三角形内角和定理即可得出.
    【详解】
    解:∵四边形ABCD为平行四边形,
    ∴,
    ∵,
    ∴,
    ∴为直角三角形,
    ∵M为AF的中点,
    ∴,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴,
    故选:C.
    【点睛】
    题目主要考查平行四边形的性质,直角三角形中斜边上的中线等于斜边的一半,等边对等角及三角形外角的性质和三角形内角和定理,理解题意,综合运用这些知识点是解题关键.
    6、C
    【解析】
    【分析】
    因为R不动,所以AR不变.根据三角形中位线定理可得EF=AR,因此线段EF的长不变.
    【详解】
    解:连接.

    、分别是、的中点,
    为的中位线,
    ,为定值.
    线段的长不改变.
    故选:.
    【点睛】
    本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
    7、A
    【解析】
    【分析】
    根据翻折的性质,可得BA′与AP的关系,根据线段的和差,可得A′C,根据勾股定理,可得A′C,根据线段的和差,可得答案.
    【详解】
    解:①在长方形纸片ABCD中,AB=12,AD=20,
    ∴BC=AD=20,
    当p与B重合时,BA′=BA=12,
    CA′=BC-BA′=20-12=8,
    ②当Q与D重合时,
    由折叠得A′D=AD=20,
    由勾股定理,得
    CA′==16,
    CA′最远是16,CA′最近是8,点A′在BC边上可移动的最大距离为16-8=8,
    故选:A.
    【点睛】
    本题考查了矩形的性质,翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.
    8、A
    【解析】
    【分析】
    由正方形1性质和勾股定理得,再由,得,则,即可解决问题.
    【详解】
    解:设大正方形的边长为,
    大正方形的面积是18,





    小正方形的面积,
    故选:A.
    【点睛】
    本题考查了勾股定理、正方形的性质以及完全平方公式等知识,解题的关键是求出.
    9、D
    【解析】
    【分析】
    利用多边形内角和公式和外角和定理,列出方程即可解决问题.
    【详解】
    解:根据题意,得:(n-2)×180=360×2,
    解得n=6.
    故选:D.
    【点睛】
    本题考查了多边形内角与外角,解答本题的关键是根据多边形内角和公式和外角和定理,利用方程法求边数.
    10、A
    【解析】
    【分析】
    由图②知,BC=6,CD=14-6=8,BD=18-14=4,再通过解直角三角形,求出△CBD高,进而求解.
    【详解】
    解:由图②知,BC=6,CD=14-6=8,BD=18-14=4,
    过点B作BH⊥DC于点H,

    设CH=x,则DH=8-x,
    则BH2=BC2-CH2=BD2-DH2,即:BH2=42-(8-x)2=62-x2,
    解得:
    则:,
    则,
    故选:A.
    【点睛】
    本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.
    二、填空题
    1、
    【解析】
    【分析】
    在上取一点,使得,连接,,作直线交于,过点作于.证明,推出点在射线上运动,根据垂线段最短可知,当点与重合时,的值最小,求出即可.
    【详解】
    解:在上取一点,使得,连接,,作直线交于,过点作于.

    ,,
    是等边三角形,
    ,,
    ,,
    是等边三角形,
    ,,


    在和中,




    点在射线上运动,
    根据垂线段最短可知,当点与重合时,的值最小,
    ,,
    ,,

    ∴GT//AB
    ∵BG//AT
    四边形是平行四边形,
    ,,


    在中,


    的最小值为,
    故答案为:.
    【点睛】
    本题考查菱形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
    2、4
    【解析】
    【分析】
    从边形的一个顶点出发,连接这个点与其余各顶点,可以把一个多边形分割成个三角形,依此作答.
    【详解】
    解:过六边形的顶点的所有对角线可将六边形分成个三角形.
    故答案为4.
    【点睛】
    本题主要考查多边形的对角线,从边形的一个顶点出发,分别连接这个点与其余各顶点,形成的三角形个数为.
    3、5
    【解析】

    4、22.5°
    【解析】
    【分析】
    根据折叠的性质可知,∠A=∠EFB=90°,AB=BF,以及纸片ABCD为矩形可得,∠AEF为直角,进而可以判断四边形ABFE为正方形,进而通过∠AEB,∠BEG的角度计算出∠FEG的大小.
    【详解】
    解:由折叠可知△AEB≌△FEB,
    ∴∠A=∠EFB=90°,AB=BF,
    ∵纸片ABCD为矩形,
    ∴AE∥BF,
    ∴∠AEF=180°-∠BFE=90°,
    ∵AB=BF,∠A=∠AEF=∠EFB=90°,
    ∴四边形ABFE为正方形,
    ∴∠AEB=45°,
    ∴∠BED=180°-45°=135°,
    ∴∠BEG=135°÷2=67.5°,
    ∴∠FEG=67.5°-45°=22.5°.
    【点睛】
    本题考查折叠的性质,矩形的性质,正方形的判定与性质,以及平行的相关性质,能够将正方形与矩形的性质相结合是解决本题的关键.
    5、4
    【解析】
    【分析】
    由勾股定理求出F,得到D,过点作H⊥AB于H,连接BF,则四边形是矩形,求出HE,过点F作FG⊥AB于G,则四边形BCFG是矩形,利用勾股定理求出的长.
    【详解】
    解:在长方形中,,,
    由折叠得5,
    ∴,
    ∴13=2,
    过点作H⊥AB于H,连接BF,则四边形是矩形,
    ∴AH=D=2,
    ∵∠EF=∠BEF,∠FE=∠BEF,
    ∴∠EF=∠FE,
    ∴E=F=13,

    ∴=5,
    过点F作FG⊥AB于G,则四边形BCFG是矩形,
    ∴BG=FC=5,
    ∴EG=13-5=8,
    ∴=4
    故答案为4.
    【点睛】
    此题考查了矩形的性质,折叠的性质,勾股定理,正确引出辅助线利用推理论证进行求解是解题的关键.
    三、解答题
    1、 (1)-3,3,1,3,-3,-1
    (2)①-2;②
    (3)或
    【解析】
    【分析】
    (1)分别以、、为对角线,利用平行四边形以及平移的性质可得点,,的坐标;
    (2)①根据平行公理得,、在同一直线上,、、在同一直线上,可得是等腰三角形△的中位线,求出,即可得的值;
    ②由①求得的的值可得,的坐标,分别求出直线过点,时的值即可求解;
    (3)由题意用表示出点,,的坐标,画出图形,求出直线与△交于点,时的值即可求解.
    (1)
    解:,,
    ,轴.
    以为对角线时,
    四边形是平行四边形,
    ,,
    将向左平移2个单位长度可得,即;
    以为对角线时,
    四边形是平行四边形,
    ,,
    将向右平移2个单位长度可得,即;
    以为对角线时,
    四边形是平行四边形,
    对角线的中点与的中点重合,
    的中点为,,

    故答案为:,,;
    (2)
    解:①如图,若△是以为底的等腰三角形,

    四边形,,是平行四边形,
    ,,,
    、、在同一直线上,、、在同一直线上,,
    是等腰三角形△的中位线,
    ,,
    ,,,


    ②由①得,
    ,.
    当直线过点时,,解得:,
    当直线过点时,,解得:,
    的取值范围为;
    (3)
    解:如图,,,,
    ,.

    连接、交于点,
    四边形是平行四边形,
    点、关于点对称,

    直线与△有公共点,
    当直线与△交于点,,解得:,
    时,直线与△有公共点;
    当直线与△交于点,,解得:,
    时,直线与△有公共点;
    综上,的取值范围为或.
    【点睛】
    本题考查了平行四边形的性质,坐标与图形性质,平移的性质,一次函数的性质,一次函数图象上点的坐标特征等知识,解题的关键是利用数形结合与分类讨论的思想进行求解.
    2、(1)①;②;=;(2)①(n-1)+(n-2)+(n-3)+……+1;②;(n-1)+(n-2)+(n-3)+……+1=;(3)①8000968;②119,n(n-3)
    【解析】
    【分析】
    (1)①根据边长为(a+b)的正方形面积公式求解即可;
    ②利用矩形和正方形的面积公式求解即可;
    (2)①根据题中的数据求和即可;
    ②根据题意求解即可;
    (3)①利用(1)的规律求解即可;
    ②根据n边形从一个顶点出发可引出(n-3)条对角线.从n个顶点出发引出(n-3)条,而每条重复一次,所以n边形对角线的总条数为n(n-3)(n≥3,且n为整数)可得答案.
    【详解】
    解:(1)①大正方形的面积为;
    ②由2个大小不同的正方形和2个大小相同的小长方形组成的图形的面积为;
    可以得到等式:=;
    故答案为:①;②;=;
    (2)①图中锐角的总个数是:(n-1)+(n-2)+(n-3)+……+1;
    ②锐角的总个数是n(n-1);
    可以得到等式为(n-1)+(n-2)+(n-3)+……+1=n(n-1);
    故答案为:①(n-1)+(n-2)+(n-3)+……+1;②n(n-1);(n-1)+(n-2)+(n-3)+……+1=n(n-1);
    (3)①19782+20222=[2000+(-22)]2+(2000+22)2
    =20002+(-22)2+2×2000×(-22)+20002+222+2×2000×22
    =2×(20002+222)
    =2×[4000000+(20+2)2]
    =2×[4000000+(202+22+2×20×2)]=8000968;
    ②一个四边形共有2条对角线,即×4×(4-3)=2;
    一个五边形共有5条对角线,即×5×(5-3)=5;
    一个六边形共有9条对角线,即×6×(6-3)=9;
    ……,
    一个十七边形共有×17×(17-3)=119条对角线;
    一个n边形共有n(n-3)(n≥3,且n为整数)条对角线.
    故答案为:119,n(n-3).
    【点睛】
    本题考查了图形的变化规律,完全平方公式,多边形的对角线,对于这种图形的变化规律的问题,读懂题目信息,找到变化规律是解题的关键.
    3、 (1)见解析
    (2)见解析
    【解析】
    【分析】
    (1)根据题意作AB的垂直平分线MN,交AB于点M,交BD延长线于点N
    (2)连接,根据平行四边形的性质求得,进而根据垂直平分线的性质以及导角可求得 是等腰直角三角形,进而证明即可得证NE=AB.
    (1)
    如图,AB的垂直平分线MN,交AB于点M,交BD延长线于点N

    (2)
    如图,连接

    四边形是平行四边形





    是的垂直平分线






    在与中,



    【点睛】
    本题考查了作垂直平分线,平行四边形的性质,垂直平分线的性质,等边对等角,三角形全等的性质与判定,掌握以上知识是解题的关键.
    4、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)根据线段的和差关系可得BC=EF,根据平行四边形的性质可得AD∥BC,AD=BC,即可得出AD=EF,可证明四边形AEFD为平行四边形,根据AE⊥BC即可得结论;
    (2)根据矩形的性质可得AF=DE,可得△BAF为直角三角形,利用“面积法”可求出AE的长,即可得答案.
    (1)
    ∵BE=CF,
    ∴BE+CE=CF+CE,即BC=EF,
    ∵ABCD是平行四边形,
    ∴AD∥BC,AD=BC,
    ∴AD=EF,
    ∵AD∥EF,
    ∴四边形AEFD为平行四边形,
    ∵AE⊥BC,
    ∴∠AEF=90°,
    ∴四边形AEFD为矩形.
    (2)
    ∵四边形AEFD为矩形,
    ∴AF=DE=4,DF=AE,
    ∵,,,
    ∴AB2+AF2=BF2,
    ∴△BAF为直角三角形,∠BAF=90°,
    ∴,
    ∴AE=,
    ∴.
    【点睛】
    本题考查平行四边形的性质、矩形的判定与性质及勾股定理的逆定理,熟练掌握相关性质及判定定理是解题关键.
    5、
    【解析】
    【分析】
    连接AC,CF,如图,根据正方形的性质得到AC=,AB=5,CF=CE=2,∠ACD=45°,∠GCF=45°,则利用勾股定理得到AF=,然后根据直角三角形斜边上的中线性质得到CT的长.
    【详解】
    解:连接AC、CF,如图,

    ∵四边形ABCD和四边形CEFG都是正方形,
    ∴AC=AB=5,CF=CE=2,∠ACD=45°,∠GCF=45°,
    ∴∠ACF=45°+45°=90°,
    在Rt△ACF中,
    ∵T为AF的中点,
    ∴,
    ∴CT的长为.
    【点睛】
    本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质,也考查了直角三角形斜边上的中线性质.

    相关试卷

    冀教版八年级下册第二十章 函数综合与测试课堂检测:

    这是一份冀教版八年级下册第二十章 函数综合与测试课堂检测,共23页。试卷主要包含了函数的自变量x的取值范围是等内容,欢迎下载使用。

    数学第二十二章 四边形综合与测试综合训练题:

    这是一份数学第二十二章 四边形综合与测试综合训练题,共33页。试卷主要包含了如图,已知矩形ABCD中,R等内容,欢迎下载使用。

    2020-2021学年第二十二章 四边形综合与测试精品课时作业:

    这是一份2020-2021学年第二十二章 四边形综合与测试精品课时作业,共25页。试卷主要包含了下列命题错误的是等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map