


初中数学冀教版八年级下册第二十二章 四边形综合与测试精品测试题
展开八年级数学下册第二十二章四边形专题训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是( )
A.1 B.4 C.2 D.6
2、如图,在平行四边形中,平分,交边于,,,则的长为( )
A.1 B.2 C.3 D.5
3、如图,为了测量一块不规则绿地B,C两点间的距离,可以在绿地的一侧选定一点A,然后测量出AB,AC的中点D,E,如果测量出D,E两点间的距离是8m,那么绿地B,C两点间的距离是( )
A.4m B.8m C.16m D.20m
4、数学课上,老师要同学们判断一个四边形门框是否为矩形.下面是某合作小组4位同学拟定的方案,其中正确的是( )
A.测量对角线是否互相平分 B.测量一组对角是否都为直角
C.测量对角线长是否相等 D.测量3个角是否为直角
5、如图,已知菱形OABC的顶点O(0,0),B(2,2),菱形的对角线的交于点D;若将菱形OABC绕点O逆时针旋转,每秒旋转45°,从如图所示位置起,经过60秒时,菱形的对角线的交点D的坐标为( )
A.(1,1) B.(﹣1,﹣1) C.(-1,1) D.(1,﹣1)
6、正方形具有而矩形不一定具有的性质是( )
A.四个角相等 B.对角线互相垂直
C.对角互补 D.对角线相等
7、在平行四边形ABCD中,∠A ∶∠ B ∶∠ C ∶∠ D的值可以是( )
A.1∶2∶3∶4 B.1∶2∶2∶1 C.2∶2∶1∶1 D.1∶2∶1∶2
8、在锐角△ABC中,∠BAC=60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④当∠ABC=60°时,MN∥BC,一定正确的有( )
A.①②③ B.②③④ C.①②④ D.①④
9、如图,在△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BCF都是等边三角形,下列结论中:①AB⊥AC;②四边形AEFD是平行四边形;③∠DFE=150°;④S四边形AEFD=8.错误的个数是( )
A.1个 B.2个 C.3个 D.4个
10、十边形中过其中一个顶点有( )条对角线.
A.7 B.8 C.9 D.10
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,将长方形ABCD沿AE,EF翻折使其B、C重合于点H,点D落在点G的位置,HE与AD交于点P,连接HF,当,时,则P到HF的距离是______.
2、如图,翠屏公园有一块长为12m,宽为6m的长方形草坪,绿化部门计划在草坪中间修两条宽度均为2m的石子路(两条石子路的任何地方的水平宽度都是2m),剩余阴影区域计划种植鲜花,则种植鲜花的面积为______m2.
3、三角形的中位线______于三角形的第三边,并且等于第三边的______.
数学表达式:如图,
∵AD=BD,AE=EC,
∴DE∥BC,且DE=BC.
4、一个多边形的每个内角都等于120°,则这个多边形的边数是______.
5、如图,矩形中,,,以点为中心,将矩形旋转得到矩形,使得点落在边上,则的度数为__________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知矩形ABCD(AB<AD).E是BC上的点,AE=AD.
(1)在线段CD上作一点F,连接EF,使得∠EFC=∠BEA(请用直尺和圆规作图,保留作图痕迹);
(2)在(1)作出的图形中,若AB=4,AD=5,求DF的值.
2、已知正方形与正方形,,.
(1)如图1,若点和点重合,点在线段上,点在线段的延长线上,连接、、,将阴影部分三角形的面积记作,则 (用含有、的代数式表示).
(2)如图2,若点与点重合,点在线段上,点在线段的延长线上,连接、、,将阴影部分三角形的面积记作,则 (用含有、的代数式表示).
(3)如图3,若将正方形沿正方形的边所在直线平移,使得点、在线段上(点不与点重合、点不与点重合),连接、、,设,将阴影部分三角形的面积记作,则 (用含有、、的代数式表示).
(4)如图4,若将正方形沿正方形的边所在直线平移,使得点、在的延长线上,连接、、,设,将阴影部分三角形的面积记作,则 (用含有、、的代数式表示).
3、已知∠MON=90°,点A是射线ON上的一个定点,点B是射线OM上的一个动点,点C在线段OA的延长线上,且AC=OB.
(1)如图1,CDOB,CD=OA,连接AD,BD.
① ;
②若OA=2,OB=3,则BD= ;
(2)如图2,在射线OM上截取线段BE,使BE=OA,连接CE,当点B在射线OM上运动时,求∠ABO和∠OCE的数量关系;
(3)如图3,当E为OB中点时,平面内一动点F满足FA=OA,作等腰直角三角形FQC,且FQ=FC,当线段AQ取得最大值时,直接写出的值.
4、已知在与中,,点在同一直线上,射线分别平分.
(1)如图1,试说明的理由;
(2)如图2,当交于点G时,设,求与的数量关系,并说明理由;
(3)当时,求的度数.
5、如图,在矩形ABCD中,
(1)尺规作图(不写作法,保留作图痕迹):作对角线BD的垂直平分线EF分别交AD、BC于E、F点,交BD于O点.
(2)在(1)的条件下,求证:AE=CF.
-参考答案-
一、单选题
1、C
【解析】
略
2、B
【解析】
【分析】
先由平行四边形的性质得,,再证,即可求解.
【详解】
解:四边形是平行四边形,
,,
,
平分,
,
,
,
,
故选:B.
【点睛】
本题考查了平行四边形的性质,等腰三角形的判定等知识,解题的关键是灵活应用这些知识解决问题.
3、C
【解析】
【分析】
根据三角形中位线定理即可求出.
【详解】
解:中,、分别是、的中点,
为三角形的中位线,
,
,
故选:C.
【点睛】
本题考查的是三角形中位线定理的应用,解题的关键是掌握三角形的中位线等于第三边的一半.
4、D
【解析】
【分析】
矩形的判定方法有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形;由矩形的判定方法即可求解.
【详解】
解:A、对角线是否互相平分,能判定是否是平行四边形,故不符合题意;
B、测量一组对角是否都为直角,不能判定形状,故不符合题意;
C、测量对角线长是否相等,不能判定形状,故不符合题意;
D、测量3个角是否为直角,若四边形中三个角都为直角,能判定矩形,故符合题意;
故选:D.
【点睛】
本题考查的是矩形的判定、平行四边形的判定等知识;熟练掌握矩形的判定和平行四边形的判定与性质是解题的关键.
5、B
【解析】
【分析】
分别过点和点作轴于点,作轴于点,根据菱形的性质以及中位线的性质求得点的坐标,进而计算旋转的度数,7.5周,进而根据中心对称求得点旋转后的D坐标
【详解】
如图,分别过点和点作轴于点,作轴于点,
∴,
∵四边形为菱形,
∴点为的中点,
∴点为的中点,
∴,,
∵,
∴;
由题意知菱形绕点逆时针旋转度数为:,
∴菱形绕点逆时针旋转周,
∴点绕点逆时针旋转周,
∵,
∴旋转60秒时点的坐标为.
故选B
【点睛】
根据菱形的性质及中点的坐标公式可得点D坐标,再根据旋转的性质可得旋转后点D的坐标,熟练掌握菱形的性质及中点的坐标公式、中心对称的性质是解题的关键.
6、B
【解析】
略
7、D
【解析】
略
8、C
【解析】
【分析】
利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.
【详解】
∵CM、BN分别是高
∴△CMB、△BNC均是直角三角形
∵点P是BC的中点
∴PM、PN分别是两个直角三角形斜边BC上的中线
∴
故①正确
∵∠BAC=60゜
∴∠ABN=∠ACM=90゜−∠BAC=30゜
∴AB=2AN,AC=2AM
∴AN:AB=AM:AC=1:2
即②正确
在Rt△ABN中,由勾股定理得:
故③错误
当∠ABC=60゜时,△ABC是等边三角形
∵CM⊥AB,BN⊥AC
∴M、N分别是AB、AC的中点
∴MN是△ABC的中位线
∴MN∥BC
故④正确
即正确的结论有①②④
故选:C
【点睛】
本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.
9、A
【解析】
【分析】
利用勾股定理逆定理证得△ABC是直角三角形,由此判断①;证明△ABC≌△DBF得到DF=AE,同理可证:△ABC≌△EFC,得到EF=AD,由此判断②;由②可判断③;过A作AG⊥DF于G,求出AG即可求出 S▱AEFD,判断④.
【详解】
解:∵AB=3,AC=4,32+42=52,
∴AB2+AC2=BC2,
∴△ABC是直角三角形,∠BAC=90°,
∴AB⊥AC,故①正确;
∵△ABD,△ACE都是等边三角形,
∴∠DAB=∠EAC=60°,
∴∠DAE=150°,
∵△ABD和△FBC都是等边三角形,
∴BD=BA,BF=BC,
∴∠DBF=∠ABC,
在△ABC与△DBF中,
,
∴△ABC≌△DBF(SAS),
∴AC=DF=AE=4,
同理可证:△ABC≌△EFC(SAS),
∴AB=EF=AD=3,
∴四边形AEFD是平行四边形,故②正确;
∴∠DFE=∠DAE=150°,故③正确;
过A作AG⊥DF于G,如图所示:
则∠AGD=90°,
∵四边形AEFD是平行四边形,
∴∠FDA=180°﹣∠DFE=180°﹣150°=30°,
∴AG=AD=,
∴S▱AEFD=DF•AG=4×=6;故④错误;
∴错误的个数是1个,
故选:A.
.
【点睛】
此题考查了等边三角形的性质,勾股定理的逆定理,全等三角形的判定及性质,平行四边形的判定及性质,直角三角形的30度角的性质,熟练掌握各知识点是解题的关键.
10、A
【解析】
【分析】
根据多边形对角线公式解答.
【详解】
解:十边形中过其中一个顶点有10-3=7条对角线,
故选:A.
【点睛】
此题考查了多边形对角线公式,理解公式的得来方法是解题的关键.
二、填空题
1、
【解析】
【分析】
连接FC,过点H作,过点P作,线段PM长度即为所求,根据折叠及矩形的性质可得,,,,,,由全等三角形及平行线的判定得出,,,点A、H、G三点共线,且,点H为AG中点,设,则,,利用勾股定理可得,,由三角形中位线的判定及性质可得,,最后在两个三角形与中,利用等面积法求解即可得.
【详解】
解:如图所示:连接FC,过点H作,过点P作,线段PM长度即为所求,
∵长方形ABCD沿AE,EF翻折使其B、C重合于点H,点D落在点G的位置,
∴,,,,,,
∴,,,
∴点A、H、G三点共线,且,点H为AG中点,
设,则,,
在中,
,
即,
解得:,
∴,,
∵且点H为AG中点,
∴HP为中位线,
∴,,
在中,
,
,即,
∴,
∴,即,
解得:,
故答案为:.
【点睛】
题目主要考查矩形及图形折叠的性质,全等三角形的性质及平行线的判定,中位线的判定和性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.
2、48
【解析】
【分析】
利用长方形的面积减去石子路的面积,即可求解.
【详解】
解:根据题意得:种植鲜花的面积为 .
故答案为:48
【点睛】
本题主要考查了求平行四边形的面积,熟练掌握平行四边形的性质是解题的关键.
3、 平行 一半
【解析】
略
4、6
【解析】
【分析】
先求出这个多边形的每一个外角的度数,然后根据任意多边形外角和等于360°,再用360°除以外角的度数,即可得到边数.
【详解】
∵多边形的每一个内角都等于120°,
∴多边形的每一个外角都等于180°-120°=60°,
∴边数n=360°÷60°=6.
故答案为:6.
【点睛】
此题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.
5、90
【解析】
【分析】
根据旋转的性质和矩形的性质可得CD=C'D=AB=AB'=3,A'D=AD=BC=B'C'=4,由勾股定理可求AC=AC'的长,延长C'B'交BC于点E,连接CC',由勾股定理求出CC'的长,最后由勾股定理逆定理判断是直角三角形即可.
【详解】
解:∵将矩形ABCD绕点A按逆时针方向旋转90°,得到矩形AB′C′D′,
∴CD=C'D=AB=AB'=3,A'D=AD=BC=B'C'=4,
∴
延长C'B'交BC于点E,连接CC',如图,
则四边形是矩形
∴
∴
∴
而
∴
∴是直角三角形
∴
故答案为:90
【点睛】
本题考查勾肥定理、旋转的性质,矩形的性质等知识,解题的关键是掌握旋转变换的性质,
三、解答题
1、 (1)见解析
(2)
【解析】
【分析】
(1)作∠DAE的角平分线,与DC的交点即为所求,理由:可先证明△AEF≌△ADF,可得∠AEF=∠D=90°,从而得到∠DAE+∠DFE=180°,进而得到∠EFC=∠DAE,再由AD∥BC,即可求解;
(2)根据矩形的性质可得∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,从而得到BE=3,进而得到EC=2,然后在 中,由勾股定理,即可求解.
(1)
解:如图,作∠DAE的角平分线,与DC的交点即为所求.
∵AE=AD,∠EAF=∠DAF,AF=AF,
∴△AEF≌△ADF,
∴∠AEF=∠D=90°,
∴∠DAE+∠DFE=180°,
∵∠EFC+∠DFE=180°,
∴∠EFC=∠DAE,
∵在矩形ABCD中,AD∥BC,
∴∠BEA=∠DAE,
∴∠EFC=∠BEA;
(2)
解:∵四边形ABCD是矩形,
∴∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,
∵AE=AD=5,
∴BE===3,
∴EC=BC﹣BE=5﹣3=2,
由(1)得:△AEF≌△ADF,
∴ ,
在 中, ,
∴ ,
∴ .
【点睛】
本题主要考查了矩形的性质,全等三角形的判定和性质,勾股定理等知识,熟练掌握矩形的性质,全等三角形的判定和性质,勾股定理是解题的关键.
2、 (1)
(2)
(3)
(4)
3、 (1)△DCA;
(2)∠ABO+∠OCE=45°,理由见解析
(3)
【解析】
【分析】
(1)①由平行线的性质可得∠ACD=∠BOA=90°,再由OB=CA,OA=CD,即可利用SAS证明△AOB≌△DCA;②过点D作DR⊥BO交BO延长线于R,由①可知△AOB≌△DCA,得到CD=OA=2,AC=OB=3,再由OC⊥OB,DR⊥OB,CD∥OB,得到DR=OC=OA+AC=5(平行线间距离相等),同理可得OR=CD=3,即可利用勾股定理得到;
(2)如图所示,过点C作CW⊥AC,使得CW=OA,连接AW,BW,先证明△AOB≌△WCA得到AB=AW,∠ABO=∠WAC,然后推出∠ABW=∠AWB=45°,证明四边形BECW是平行四边形,得到BW∥CE,则∠WJC=∠BWA=45°,由三角形外角的性质得到∠WJC=∠WAC+∠JCA,则∠ABO+∠OCE=45°;
(3)如图3-1所示,连接AF,则,如图3-2所示,当A、F、Q三点共线时,AQ有最大值,由此求解即可.
(1)
解:①∵CD∥OB,
∴∠ACD=∠BOA=90°,
又∵OB=CA,OA=CD,
∴△AOB≌△DCA(SAS);
故答案为:△DCA;
②如图所示,过点D作DR⊥BO交BO延长线于R,
由①可知△AOB≌△DCA,
∴CD=OA=2,AC=OB=3,
∵OC⊥OB,DR⊥OB,CD∥OB,
∴DR=OC=OA+AC=5(平行线间距离相等),
同理可得OR=CD=3,
∴BR=OB+OR=5,
∴;
故答案为:;
(2)
解:∠ABO+∠OCE=45°,理由如下:
如图所示,过点C作CW⊥AC,使得CW=OA,连接AW,BW,
在△AOB和△WCA中,
,
∴△AOB≌△WCA(SAS),
∴AB=AW,∠ABO=∠WAC,
∵∠AOB=90°,
∴∠ABO+∠BAO=90°,
∴∠BAO+∠WAC=90°,
∴∠BAW=90°,
又∵AB=AW,
∴∠ABW=∠AWB=45°,
∵BE⊥OC,CW⊥OC,
∴BE∥CW,
又∵BE=OA=CW,
∴四边形BECW是平行四边形,
∴BW∥CE,
∴∠WJC=∠BWA=45°,
∵∠WJC=∠WAC+∠JCA,
∴∠ABO+∠OCE=45°;
(3)
解:如图3-1所示,连接AF,
∴,
∴如图3-2所示,当A、F、Q三点共线时,AQ有最大值,
∵E是OB的中点,BE=OA,
∴BE=OE=OA,
∴OB=AC=2OA,
∵△CFQ是等腰直角三角形,CF=QF,
∴∠CFQ=∠CFA=90°,
∴,
∴,
∴.
【点睛】
本题主要考查了全等三角形的性质与判定,勾股定理,平行四边形的性质与判定,平行线的性质与判定等等,熟知相关知识是解题的关键.
4、 (1)理由见解析
(2),理由见解析
(3)
【解析】
【分析】
(1),,可知,进而可说明;
(2)如图1所示,连接并延长至点K,分别平分,则设,为的外角,,同理,
,得;又由(1)中证明可知,,进而可得到结果;
(3)如图2所示,过点C作,则,,可得,由(1)中证明可得,在中, ,即,进而可得到结果.
(1)
证明:
又
在和中
.
(2)
解:.
理由如下:如图1所示,连接并延长至点K
分别平分
则设
为的外角
同理可得
即
.
又由(1)中证明可知
由三角形内角和公式可得
即
.
(3)
解:当时,如图2所示,过点C作,则
,即
由(1)中证明可得
在中,根据三角形内角和定理有
即
即
即,解得:
故.
【点睛】
本题考查了全等三角形的判定与性质、三角形的外角性质、三角形内角和定理、平行线的性质、角平分线的性质等知识,连接并延长,利用三角形外角性质证得是解题的关键.
5、 (1)见解析
(2)见解析
【解析】
【分析】
(1)利用尺规作出图形即可.
(2)利用全等三角形的性质证明即可.
(1)
解:如图,直线EF即为所求作.
.
(2)
证明:在矩形ABCD中,AD=BC,∠ADB=∠DBC,
∵EF为BD的垂直平分线,
∴∠EOD=∠FOB=90°,OB=OD,
在△EOD与△FOB中,
,
∴△EOD≌△FOB(ASA),
∴ED=BF,
∴AD-ED=BC-BF,即AE=CF.
【点睛】
本题考查了作图-复杂作图,线段的垂直平分线,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
冀教版八年级下册第二十二章 四边形综合与测试精品一课一练: 这是一份冀教版八年级下册第二十二章 四边形综合与测试精品一课一练,共27页。试卷主要包含了如图,已知矩形ABCD中,R,如图,E等内容,欢迎下载使用。
冀教版八年级下册第二十二章 四边形综合与测试优秀练习: 这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀练习,共26页。试卷主要包含了在中,若,则的度数是等内容,欢迎下载使用。
2021学年第二十二章 四边形综合与测试优秀一课一练: 这是一份2021学年第二十二章 四边形综合与测试优秀一课一练,共36页。试卷主要包含了下列命题错误的是等内容,欢迎下载使用。