开学活动
搜索
    上传资料 赚现金

    2022年冀教版八年级数学下册第二十二章四边形定向测试练习题(精选含解析)

    2022年冀教版八年级数学下册第二十二章四边形定向测试练习题(精选含解析)第1页
    2022年冀教版八年级数学下册第二十二章四边形定向测试练习题(精选含解析)第2页
    2022年冀教版八年级数学下册第二十二章四边形定向测试练习题(精选含解析)第3页
    还剩22页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀同步达标检测题

    展开

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀同步达标检测题,共25页。试卷主要包含了下列说法不正确的是,如图,正方形的边长为,对角线等内容,欢迎下载使用。
    八年级数学下册第二十二章四边形定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、若菱形的周长为8,高为2,则菱形的面积为(       A.2 B.4 C.8 D.162、如图,已知矩形ABCD中,RP分别是DCBC上的点,EF分别是APRP的中点,当PBC上从BC移动而R不动时,那么下列结论成立的是(       A.线段EF的长逐渐增大 B.线段EF的长逐渐减小C.线段EF的长不改变 D.线段EF的长不能确定3、已知锐角∠AOB,如图.(1)在射线OA上取一点C,以点O为圆心,OC长为半径画弧,交射线OB于点D,连接CD(2)分别以点CD为圆心,CD长为半径作弧,两弧交于点P,连接CPDP(3)作射线OPCD于点Q根据以上作图过程及所作图形,下列结论中错误的是(   )A.四边形OCPD是菱形 B.CP=2QCC.∠AOP=∠BOP D.CDOP4、下列说法不正确的是(  )A.矩形的对角线相等B.直角三角形斜边上的中线等于斜边的一半C.对角线互相垂直且相等的四边形是正方形D.菱形的对角线互相垂直5、一个多边形从一个顶点引出的对角线条数是4条,这个多边形的边数是(       A.5 B.6 C.7 D.86、若n边形每个内角都为156°,那么n等于(       A.8 B.12 C.15 D.167、如图,正方形的边长为,对角线相交于点上的一点,且,连接并延长交于点.过点于点,交于点,则的长为(     A. B. C. D.8、如图,四边形中,,对角线相交于点于点于点,连接,若,则下列结论:③四边形是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是(       A.4 B.3 C.2 D.19、如图.在长方形纸片ABCD中,AB=12,AD=20,所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点PQ也随之移动.点PQ分别在边ABAD上移动,则点A′在BC边上可移动的最大距离为(       A.8 B.10 C.12 D.1610、在中,若,则的度数是(       A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、将矩形纸片ABCDABBC)沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图1);再沿过点E的直线折叠,使点D落在BE上的点D'处,折痕为EG(如图2):再展开纸片(如图3),则图3中∠FEG的大小是__.2、一个多边形的内角和是外角和的2倍,则这个多边形的边数为_____.3、如图,在矩形中,的角平分线于点,连接恰好平分,若,则的长为______.4、矩形的性质定理1:矩形的四个角都是________.符号语言:∵四边形ABCD是矩形,∴∠A=∠B=∠C=∠D=90°.矩形的性质定理2:矩形的对角线________.符号语言:∵四边形ABCD是矩形,ACBD5、如图,四边形ABFEAJKCBCIH分别是以RtABC的三边为一边的正方形,过点CAB的垂线,交AB于点D,交FE于点G,连接HACF.欧几里得编纂的《原本》中收录了用该图形证明勾股定理的方法.关于该图形的下面四个结论:①△ABH≌△FBC②正方形BCIH的面积=2△ABH的面积;③矩形BFGD的面积=2△ABH的面积;BD2+AD2+CD2=BF2正确的有 ______.(填序号)三、解答题(5小题,每小题10分,共计50分)1、如图,在四边形ABCD中,ABAD,AD//BC(1)在图中,用尺规作线段BD的垂直平分线EF,分别交BDBC于点EF.(保留作图痕迹,不写作法)(2)连接DF,证明四边形ABFD为菱形.2、如图,在中,于点E,延长BC至点F,使,连接AFDEDF(1)求证:四边形AEFD为矩形;(2)若,求DF的长.3、如图,点DABC内一点,点EFGH分别是ABACCDBD的中点.(1)求证:四边形EFGH是平行四边形;(2)如果∠BDC=90°,∠DBC=30°,AD=6,求四边形EFGH的周长.4、如图,在平行四边形中,分别是边上的点,且,求证:四边形是矩形5、如图,在矩形ABCD中,(1)尺规作图(不写作法,保留作图痕迹):作对角线BD的垂直平分线EF分别交ADBCEF点,交BDO点.(2)在(1)的条件下,求证:AE=CF -参考答案-一、单选题1、B【解析】【分析】根据周长求出边长,利用菱形的面积公式即可求解.【详解】∵菱形的周长为8,∴边长=2,∴菱形的面积=2×2=4,故选:B.【点睛】此题考查菱形的性质,熟练掌握菱形的面积=底×高是解题的关键.2、C【解析】【分析】因为R不动,所以AR不变.根据中位线定理,EF不变.【详解】解:连接AR因为EF分别是APRP的中点,EF的中位线,所以,为定值.所以线段的长不改变.故选:C.【点睛】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.3、A【解析】【分析】根据作图信息可以判断出OP平分,由此可以逐一判断即可.【详解】解:由作图可知,平分OP垂直平分线段CD∴∠AOP=∠BOPCDOP故选项CD正确;由作图可知, 是等边三角形, OP垂直平分线段CD CP=2QC故选项B正确,不符合题意;由作图可知,,不能确定四边形OCPD是菱形,故选项A符合题意,故选:A【点睛】本题考查了基本作图,解题的关键是熟练掌握作图的依据.4、C【解析】【分析】利用矩形的性质,直角三角形的性质,正方形的判定,菱形的性质依次判断可求解.【详解】解;矩形的对角线相等,故选项A不符合题意;直角三角形斜边上的中线等于斜边的一半,故选项B不符合题意;对角线互相垂直且相等的四边形不一定是正方形,故选项C符合题意;菱形的对角线互相垂直,故选项D不符合题意;故选:C.【点睛】本题考查了正方形的判定,矩形的性质,菱形的性质,直角三角形的性质,熟练运用这些性质解决问题是本题的关键.5、C【解析】【分析】根据从n边形的一个顶点引出对角线的条数为(n-3)条,可得答案.【详解】解:∵一个n多边形从某个顶点可引出的对角线条数为(n-3)条,而题目中从一个顶点引出4条对角线,n-3=4,得到n=7,∴这个多边形的边数是7.故选:C.【点睛】本题考查了多边形的对角线,从一个顶点引对角线,注意相邻的两个顶点不能引对角线.6、C【解析】【分析】首先求得外角的度数,然后利用多边形的外角和是360度,列式计算即可求解.【详解】解:由题意可知:n边形每个外角的度数是:180°-156°=24°,n=360°÷24°=15.故选:C.【点睛】本题考查了多边形的外角与内角,熟记多边形的外角和定理是关键.7、C【解析】【分析】根据正方形的性质以及已知条件求得的长,进而证明,即可求得,勾股定理即可求得的长【详解】解:如图,设的交点为四边形是正方形,,中,故选C【点睛】本题考查了正方形的性质,勾股定理,全等三角形的性质与判定,掌握正方形的性质是解题的关键.8、B【解析】【分析】DE=BF以及DF=BE,可证明RtDCFRtBAE,由FC=EA,以及双垂直可证,四边形CFAE是平行四边形由此可证明②③正确.【详解】解:中,,(故①正确);于点于点四边形是平行四边形,,(故②正确);四边形是平行四边形,(故③正确);由以上可得出:等.(故④错误),故正确的有3个,故选:【点评】此题主要考查了平行四边形的性质与判定以及全等三角形的判定与性质等知识,得出是解题关键.9、A【解析】【分析】根据翻折的性质,可得BA′与AP的关系,根据线段的和差,可得AC,根据勾股定理,可得AC,根据线段的和差,可得答案.【详解】解:①在长方形纸片ABCD中,AB=12,AD=20,BC=AD=20,pB重合时,BA′=BA=12,CA′=BC-BA′=20-12=8,②当QD重合时,由折叠得AD=AD=20,由勾股定理,得CA′==16,CA′最远是16,CA′最近是8,点A′在BC边上可移动的最大距离为16-8=8,故选:A.【点睛】本题考查了矩形的性质,翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.10、B【解析】【分析】利用平行四边形的对角相等即可选择正确的选项.【详解】解:四边形是平行四边形,故选:B.【点睛】本题考查了平行四边形的性质,解题的关键是记住平行四边形的性质,属于中考基础题.二、填空题1、22.5°【解析】【分析】根据折叠的性质可知,∠A=∠EFB=90°,AB=BF,以及纸片ABCD为矩形可得,∠AEF为直角,进而可以判断四边形ABFE为正方形,进而通过∠AEB,∠BEG的角度计算出∠FEG的大小.【详解】解:由折叠可知△AEB≌△FEB∴∠A=∠EFB=90°,AB=BF∵纸片ABCD为矩形,AEBF∴∠AEF=180°-∠BFE=90°,AB=BF,∠A=∠AEF=EFB=90°,∴四边形ABFE为正方形,∴∠AEB=45°,∴∠BED=180°-45°=135°,∴∠BEG=135°÷2=67.5°,∴∠FEG=67.5°-45°=22.5°.【点睛】本题考查折叠的性质,矩形的性质,正方形的判定与性质,以及平行的相关性质,能够将正方形与矩形的性质相结合是解决本题的关键.2、6【解析】【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【详解】解:多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,这个多边形的边数为6.故答案为:6.【点睛】本题主要考查了多边形的内角和定理与外角和定理,解题的关键是熟练掌握多边形的外角和以及多边形的内角和定理.3、【解析】【分析】根据矩形的性质得,根据BE的角平分线,得,则,在中,根据勾股定理得,根据平行线的性质得,由因为EC平分,等量代换得,所以,即可得.【详解】解:∵四边形ABCD为矩形,BE的角平分线,中,根据勾股定理得,EC平分故答案为:【点睛】本题考查了矩形的性质,勾股定理,角平分线的性质,平行线的性质,解题的关键是掌握这些知识点.4、     直角     相等【解析】5、①②③【解析】【分析】由“SAS”可证△ABH≌△FBC,故①正确;由平行线间的距离处处相等,可得SABH=SBCH=S正方形BCIH,故②正确;同理可证矩形BFGD的面积=2△ABH的面积,故③正确;由勾股定理可得BD2+AD2+2CD2=BF2,故④错误,即可求解.【详解】解:∵四边形ABFE和四边形CBHI是正方形,AB=FBHB=CB,∠ABF=∠CBH=90°,∴∠CBF=∠HBA∴△ABH≌△FBCSAS),故①正确;如图,连接HCAIBHSABH=SBCH=S正方形BCIH∴正方形BCIH的面积=2△ABH的面积,故②正确;CGBFSCBF=×BF×BD=S矩形BDGF∴矩形BFGD的面积=2△ABH的面积,故③正确;BC2=CD2+DB2AC2=CD2+AD2BC2+AC2=AB2BD2+CD2+CD2+AD2=AB2=BF2BD2+AD2+2CD2=BF2,故④错误,故答案为:①②③.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,平行线的性质,勾股定理等知识,灵活运用这些性质解决问题是解题的关键.三、解答题1、 (1)见解析(2)见解析【解析】【分析】(1)直接利用线段垂直平分线的作法得出答案;(2)结合垂直平分线的性质得出△ADE≌△FBE,即可得出AE=EF,进而利用菱形的判定方法得出答案.(1)(1)如图:EF即为所求作(2)证明:如图,连接DFAD//BC∴∠ADE=∠EBFAF垂直平分BDBE=DE在△ADE和△FBE中,∴△ADE≌△FBEASA),AE=EFBDAF互相垂直且平分,∴四边形ABFD为菱形.【点睛】此题主要考查了菱形的判定以及线段垂直平分线的性质与作法,正确应用线段垂直平分线的性质是解题关键.2、 (1)见解析(2)【解析】【分析】(1)根据线段的和差关系可得BCEF,根据平行四边形的性质可得ADBCADBC,即可得出ADEF,可证明四边形AEFD为平行四边形,根据AEBC即可得结论;(2)根据矩形的性质可得AFDE,可得△BAF为直角三角形,利用“面积法”可求出AE的长,即可得答案.(1)BECFBE+CECF+CE,即BCEFABCD是平行四边形,ADBCADBCADEFADEF∴四边形AEFD为平行四边形,AEBC∴∠AEF=90°,∴四边形AEFD为矩形.(2)∵四边形AEFD为矩形,AFDE=4,DF=AEAB2+AF2BF2∴△BAF为直角三角形,∠BAF=90°,AE=【点睛】本题考查平行四边形的性质、矩形的判定与性质及勾股定理的逆定理,熟练掌握相关性质及判定定理是解题关键.3、 (1)见解析(2)12【解析】【分析】1)利用三角形的中位线定理得出EHFGADEFGHBC,即可得出结论;2)根据含30度角的直角三角形的性质,求得,由(1)得出四边形EFGH的周长=EH+GH+FG+EFAD+BC,即可得出结果.(1)证明:∵点EFGH分别是ABACCDBD的中点.EHFGADBC∴四边形EFGH是平行四边形;(2)∵∠BDC90°,∠DBC30°,BC2CD4由(1)得:四边形EFGH的周长=EH+GH+FG+EFAD+BC又∵AD6∴四边形EFGH的周长=AD+BC6+812【点睛】本题考查了平行四边形的判定与性质,三角形的中位线定理,含30度角的直角三角形的性质,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.4、证明见解析【解析】【分析】平行四边形,可知;由于 ,可得,知四边形为平行四边形,由可知四边形是矩形.【详解】证明:∵四边形 是平行四边形∴四边形为平行四边形又∵∴四边形是矩形.【点睛】本题考查了平行四边形的性质与判定,矩形的判定等知识.解题的关键在于灵活掌握矩形的判定.5、 (1)见解析(2)见解析【解析】【分析】(1)利用尺规作出图形即可.(2)利用全等三角形的性质证明即可.(1)解:如图,直线EF即为所求作.(2)证明:在矩形ABCD中,AD=BC,∠ADB=∠DBCEFBD的垂直平分线,∴∠EOD=∠FOB=90°,OB=OD在△EOD与△FOB中,∴△EOD≌△FOBASA),ED=BFAD-ED=BC-BF,即AE=CF【点睛】本题考查了作图-复杂作图,线段的垂直平分线,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题. 

    相关试卷

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品综合训练题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品综合训练题

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课后测评:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课后测评,共29页。

    冀教版八年级下册第二十二章 四边形综合与测试优秀同步训练题:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀同步训练题,共25页。试卷主要包含了六边形对角线的条数共有,如图,在正方形ABCD中,点E等内容,欢迎下载使用。

    英语朗读宝
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map