30实际问题与二元一次方程组(一)(提高) 巩固练习
展开
这是一份30实际问题与二元一次方程组(一)(提高) 巩固练习,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
【巩固练习】一、选择题1.某鞋店有甲、乙两款鞋各30双,甲鞋一双200元,乙鞋一双50元.该店促销的方式:买一双甲鞋,送一双乙鞋;只买乙鞋没有任何优惠.若打烊后得知,此两款鞋共卖得1800元,还剩甲鞋x双、乙鞋y双,则依题意可列出下列哪一个方程式? ( ) .A.200(30-x)+50(30-y) = 1800 B.200(30-x)十50(30-x-y)=1800C.200(30-x)+50(60-x-y)=1800 D.200(30-x)十50[30-(30-x)-y]=18002.(2015春•承德校级月考)现有大、小两种船,1艘大船与4艘小船一次最多可以载客46名,2艘大船与3艘小船一次最多可以载客57名,某旅游点的船有3艘大船与6艘小船,一次最多可以载客的人数为( )A.129 B.120 C.108 D.963.欣平超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元但不超过300元一律九折;(3)一次性购物超过300元一律八折.王波两次购物分别付款80元、252元,如果王波一次性购买与上两次相同的商品,则应付款( ). A.288元 B.322 元 C.288元或316元 D.332元或363元4.某次知识竞赛共出了25道试题.评分标准如下:答对一道题加4分;答错1道题扣1分;不答记0分,已知李刚不答的题比答错的题多2道,他的总分为74分,则他答对了 ( ).A.18道 B.19道 C.20道 D.21道5.某班学生参加运土劳动,一部分学生抬土,另一部分学生挑土,已知全班共用箩筐59个,扁担36根,若设抬土的学生x人,挑土的学生y人,则有 ( ).A. B. C. D.6.在早餐店里,王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元.李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元.若馒头每颗x元,包子每颗y元,则下列哪一个二元一次联立方程式可表示题目中的数量关系? ( ) A. B.
C. D.二、填空题7.(2016•盐城)李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟,则李师傅加工2个甲种零件和4个乙种零件共需 分钟.8.如图所示,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的,两根铁棒长度之和为55cm,则木桶中水的深度是 cm.9.(2015春•沂源县期末)一个水池有两个进水管,单独开甲管注满水池需2小时,单独开乙管注满水池需3小时,两个同时开注满水池的时间是_________小时. 10.某商场出售茶壶和茶杯,茶壶每只15元,茶杯每只3元,商店规定买一只茶壶赠一只茶杯,某人共付款171元得茶壶、茶杯共36只(含赠品在内),其中茶壶________只,茶杯________只.11.已知甲、乙两种商品的进价和为100元,为促销而打折销售,若甲商品打8折,乙商品打6折,则可赚50元;若甲商品打6折,乙商品打8折,则可赚30元,则甲、乙两种商品的定价分别是________.12. 如图①,在第一个天平上,砝码A的质量等于砝码B加上砝码C的质量;如图②,在第二个天平上,砝码A加上砝码B的质量等于3个砝码C的质量.请你判断:1个砝码A与________个砝码C的质量相等.三、解答题13.(2015春•自贡期末)某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:商品价格AB进价(元/件)12001000售价(元/件)13501200(总利润=单件利润×销售量)(1)该商场第1次购进A、B两种商品各多少件?(2)商场第2次以原价购进A、B两种商品,购进B商品的件数不变,而购进A商品的件数是第1次的2倍,A商品按原价销售,而B商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润不少于75000元,则B种商品最低售价为每件多少元? 14.某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出大楼共有4道门,其中2道正门大小相同,2道侧门大小也相同,安全检查中,对4道门进行了测试:当同时开启1道正门和2道侧门时,2分钟内可通过560名学生;当同时开启1道正门和1道侧门时,4分钟内可通过800名学生,求平均每分钟1道正门和1道侧门各可通过多少名学生? 15.(2016•广安)某水果基地计划装运甲、乙、丙三种水果到外地销售(每辆汽车规定满载,并且只装一种水果).如表为装运甲、乙、丙三种水果的重量及利润. 甲乙 丙 每辆汽车能装的数量(吨) 42 3 每吨水果可获利润(千元) 57 4(1)用8辆汽车装运乙、丙两种水果共22吨到A地销售,问装运乙、丙两种水果的汽车各多少辆?(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B地销售(每种水果不少于一车),假设装运甲水果的汽车为m辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m表示)(3)在(2)问的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少? 【答案与解析】一、选择题1. 【答案】D; 【解析】由已知,卖出甲鞋(30-x)双,则送出乙鞋也是(30-x)双,那么乙卖出[30-(30-x)-y]双,卖出甲鞋的钱数加上卖出乙鞋的钱数就等于1800元,由此得出答案.2.【答案】D.【解析】设1艘大船的载客量为x人,一艘小船的载客量为y人.由题意可得:,解得,∴3x+6y=96.∴3艘大船与6艘小船,一次可以载游客的人数为96人.3. 【答案】C;【解析】解:一次性购物超过100元,但不超过300元一律9折,则在这个范围内最低付款90元,因而第一次付款80元,没有优惠;当第二次购物是第二种优惠,可得出原价是 252÷0.9=280(元)(符合超过100不高于300).则两次共付款:80+280=360元,超过300元,则一次性购买应付款:360×0.8=288元;
当第二次付款是超过300元时:可得出原价是 252÷0.8=315(符合超过300元),
则两次共应付款:80+315=395元,则一次性购买应付款:395×0.8=316元.
故一次性购买应付款:288元或316元. 4. 【答案】B; 【解析】设李刚答错的题为道,答对的题道,则他不答的题道,且有,解得.5. 【答案】B;【解析】注意了解生活常识:抬土即两个人需要一根扁担和一个箩筐;挑土即一个人需要一根扁担和两个箩筐.6. 【答案】B;【解析】设馒头每颗x元,包子每颗y元,根据题意王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元,可列式为5x+3y=52,李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元,可列式为0.9(11x+5y)=90,联立方程即可得到所求方程组.二、填空题7. 【答案】40;【解析】解:设李师傅加工1个甲种零件需要x分钟,加工1个乙种零件需要y分钟,依题意得:,由①+②,得7x+14y=140,所以x+2y=20,则2x+4y=40,所以李师傅加工2个甲种零件和4个乙种零件共需40分钟.故答案是:40.8.【答案】20;【解析】设两根铁棒的长度分别是a,b(a>b),则有 解得所以,∴ 木桶中水的深度为20cm9.【答案】.【解析】设两个同时开注满水池的时间是x小时,由题意得(+)x=1,解得:x=.答:两个同时开注满水池的时间是小时.10.【答案】7, 29;【解析】设买茶壶x只,那么赠x只茶杯,所以要买(36-2x)茶杯,然后根据共付款171元即可列出方程,解方程就可以解决问题.11.【答案】150元,50元;【解析】设甲、乙两种商品的定价分别为元,元,则:,解得.12. 【答案】2. 【解析】此题可以分别设砝码A、B、C的质量是x,y,z.然后根据两个天平列方程组,消去y,得到x和z之间的关系即可.三、解答题13.【答案】解:(1)设购进A种商品x件,B种商品y件,根据题意得化简得,解之得.答:该商场购进A、B两种商品分别为200件和150件; (2)由于A商品购进400件,获利为(1350﹣1200)×400=60000(元),从而B商品售完获利应不少于75000﹣60000=15000(元),设B商品每件售价为x元,则150(x﹣1000)≥15000,解之得x≥1100.所以B种商品最低售价为每件1100元. 14.【解析】解:设平均每分钟1道正门可通过x名学生,1道侧门可通过y名学生.由题意,得, 解得. 答:平均每分钟1道正门可通过120名学生,l道侧门可通过80名学生. 15.【解析】解:(1)设装运乙、丙水果的车分别为x辆,y辆,得:,解得:.答:装运乙种水果的车有2辆、丙种水果的汽车有6辆.(2)设装运乙、丙水果的车分别为a辆,b辆,得:,解得.答:装运乙种水果的汽车是(m﹣12)辆,丙种水果的汽车是(32﹣2m)辆.(3)总利润:5×4m+7×2(m﹣12)+4×3(32﹣2m)=10m+216.∵,∴13≤m≤15.5,∵m为正整数,∴m=13,14,15,∴当m=15时,总利润最大:10×15+216=366(千元),答:当运甲水果的车15辆,运乙水果的车3辆,运丙水果的车2辆,利润最大,最大利润为366千元.
相关试卷
这是一份初中数学华师大版七年级上册1 角同步达标检测题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份中考数学一轮总复习30《几何综合问题》知识讲解+巩固练习(提高版)(含答案),共28页。
这是一份30实际问题与二元一次方程组(一)(提高) 知识讲解,共5页。