|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022高考数学一轮总复习第二章函数概念与基本初等函数第6讲指数对数运算集训含解析文 试卷
    立即下载
    加入资料篮
    2022高考数学一轮总复习第二章函数概念与基本初等函数第6讲指数对数运算集训含解析文 试卷01
    2022高考数学一轮总复习第二章函数概念与基本初等函数第6讲指数对数运算集训含解析文 试卷02
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022高考数学一轮总复习第二章函数概念与基本初等函数第6讲指数对数运算集训含解析文

    展开
    这是一份2022高考数学一轮总复习第二章函数概念与基本初等函数第6讲指数对数运算集训含解析文,共5页。

    [A级 基础练]
    1.若实数a>0,则下列等式成立的是( )
    A.(-2)-2=4 B.2a-3=eq \f(1,2a3)
    C.(-2)0=-1 D.(aeq \s\up8(-eq \f(1,4)))4=eq \f(1,a)
    解析:选D.对于A,(-2)-2=eq \f(1,4),故A错误;对于B,2a-3=eq \f(2,a3),故B错误;对于C,(-2)0=1,故C错误;对于D,(a-eq \f(1,4))4=eq \f(1,a).
    2.(2021·陕西汉中联考)若lg2x+lg4y=1,则( )
    A.x2y=2 B.x2y=4
    C.xy2=2 D.xy2=4
    解析:选B.lg2x+lg4y=lg2x+eq \f(1,2)lg2y=lg2x+lg2yeq \s\up8(\f(1,2))=lg2(xyeq \s\up8(\f(1,2)))=1,所以xyeq \s\up8(\f(1,2))=2,两边平方得x2y=4,故选B.
    3.如果2lga(P-2Q)=lgaP+lgaQ,那么eq \f(P,Q)的值为( )
    A.eq \f(1,4) B.4
    C.1 D.4或1
    解析:选B.由2lga(P-2Q)=lgaP+lgaQ,得lga(P-2Q)2=lga(PQ).由对数运算性质得(P-2Q)2=PQ,即P2-5PQ+4Q2=0,所以P=Q(舍去)或P=4Q,解得eq \f(P,Q)=4.故选B.
    4.若lg 2,lg(2x+1),lg(2x+5)成等差数列,则x的值为 ( )
    A.1 B.0或eq \f(1,8)
    C.eq \f(1,8) D.lg23
    解析:选D.由题意知lg 2+lg(2x+5)=2lg(2x+1),2(2x+5)=(2x+1)2,(2x)2-9=0,2x=3,x=lg23,故选D.
    5.根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与eq \f(M,N)最接近的是(参考数据:lg 3≈0.48)( )
    A.1033 B.1053
    C.1073 D.1093
    解析:选D.设eq \f(M,N)=eq \f(3361,1080)=t(t>0),则3361=t·1080,所以361lg 3=lg t+80,所以361×0.48=lg t+80,所以lg t=173.28-80=93.28,所以t=1093.28.故选D.
    6.eq \f(a3,\r(a)·\r(5,a4))(a>0)的值是____________.
    解析:eq \f(a3,\r(a)·\r(5,a4))=eq \f(a3,a\s\up8(\f(1,2))·a\s\up8(\f(4,5)))=aeq \s\up8(3-eq \f(1,2)-eq \f(4,5))=aeq \s\up8(\f(17,10)).
    答案:aeq \s\up8(\f(17,10))
    7.已知2x=3,lg4eq \f(8,3)=y,则x+2y的值为____________.
    解析:由2x=3,lg4eq \f(8,3)=y,
    得x=lg23,y=lg4eq \f(8,3)=eq \f(1,2)lg2eq \f(8,3),
    所以x+2y=lg23+lg2eq \f(8,3)=lg28=3.
    答案:3
    8.eq \f((1-lg63)2+lg62·lg618,lg64)=____________.
    解析:原式=eq \f((lg62)2+lg62·(2-lg62),2lg62)
    =eq \f(2lg62,2lg62)=1.
    答案:1
    9.化简下列各式:
    (1)eq \b\lc\(\rc\)(\a\vs4\al\c1(2\f(7,9)))eq \s\up12(0.5)+0.1-2+eq \b\lc\(\rc\)(\a\vs4\al\c1(2\f(10,27)))eq \s\up12(-\f(2,3))-3π0+eq \f(37,48);
    (2) eq \r(3,a\s\up8(\f(7,2))·\r(a-3))÷ eq \r(3,\r(a-3)·\r(a-1));
    (3)eq \f(lg 3+\f(2,5)lg 9+\f(3,5)lg \r(27)-lg\r(3),lg 81-lg 27).
    解:(1)原式=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(25,9)))eq \s\up8(\f(1,2))+eq \f(1,0.12)+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(64,27)))eq \s\up12(-\f(2,3))-3+eq \f(37,48)=eq \f(5,3)+100+eq \f(9,16)-3+eq \f(37,48)=100.
    (2)原式= eq \r(3,a\s\up8(\f(7,2))·aeq \s\up8(-\f(3,2)))÷ eq \r(3,aeq \s\up8(-\f(3,2))·aeq \s\up8(-\f(1,2)))=eq \r(3,a2)÷eq \r(3,a-2)=aeq \s\up8(\f(2,3))÷aeq \s\up8(-eq \f(2,3))=aeq \s\up8(\f(4,3)).
    (3)方法一:原式=eq \f(lg 3+\f(4,5)lg 3+\f(9,10)lg 3-\f(1,2)lg 3,4lg 3-3lg 3)=eq \f(\b\lc\(\rc\)(\a\vs4\al\c1(1+\f(4,5)+\f(9,10)-\f(1,2)))lg 3,(4-3)lg 3)=eq \f(11,5);
    方法二:原式=eq \f(lg\b\lc\(\rc\)(\a\vs4\al\c1(3×9\s\up8(\f(2,5))×27eq \s\up8(\f(1,2)×\f(3,5))×3eq \s\up8(-\f(1,2)))),lg \f(81,27))=eq \f(lg 3\s\up8(\f(11,5)),lg 3)=eq \f(11,5).
    10.(1)设lga3=m,lga2=n,求a2m+n的值;
    (2)设3a=2,3b=5,试用a,b表示lg3eq \r(30).
    解:(1)由lga3=m,得am=3.由lga2=n,得an=2.
    所以a2m+n=(am)2·an=32×2=18.
    (2)由3a=2,得a=lg32.由3b=5,得b=lg35.所以lg3eq \r(30)=lg330eq \s\up8(\f(1,2))=eq \f(1,2)lg3(2×5×3)=eq \f(1,2)(lg32+lg35+lg33)=eq \f(1,2)(a+b+1)=eq \f(1,2)a+eq \f(1,2)b+eq \f(1,2).
    [B级 综合练]
    11.已知函数f(x)=eq \b\lc\{(\a\vs4\al\c1(3x,x≤0,,-\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))\s\up12(x),x>0,))则f(f(lg23))=( )
    A.-9 B.-1
    C.-eq \f(1,3) D.-eq \f(1,27)
    解析:选B.由函数f(x)=eq \b\lc\{(\a\vs4\al\c1(3x,x≤0,,-\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))\s\up12(x),x>0))以及lg23>1,则f(lg23)=-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))eq \s\up12(lg23)=-2eq \s\up8(lg2eq \f(1,3))=-eq \f(1,3),所以f(f(lg23))=feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,3)))=3×eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,3)))=-1,故选B.
    12.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m2-m1=eq \f(5,2)lgeq \f(E1,E2),其中星等为mk的星的亮度为Ek(k=1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )
    A.1010.1 B.10.1
    C.lg 10.1 D.10-10.1
    解析:选A.设太阳的星等与亮度分别为m1与E1,天狼星的星等与亮度分别为m2和E2依题意,得m1=-26.7,m2=-1.45,所以eq \f(5,2)lgeq \f(E1,E2)=-1.45-(-26.7)=25.25,所以lgeq \f(E1,E2)=25.25×eq \f(2,5)=10.1,所以eq \f(E1,E2)=1010.1.故选A.
    13.定义a·b=eq \b\lc\{(\a\vs4\al\c1(a·b,a·b≥0,,\f(a,b),a·b<0,))设函数f(x)=ln x·x,则f(2)+feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))=________.
    解析:因为2×ln 2>0,所以f(2)=2×ln 2=2ln 2.
    因为eq \f(1,2)×ln eq \f(1,2)<0,所以feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))=eq \f(ln\f(1,2),\f(1,2))=-2ln 2.
    则f(2)+feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))=2ln 2-2ln 2=0.
    答案:0
    14.已知4a=8,2m=9n=36,且eq \f(1,m)+eq \f(1,2n)=b,试比较1.5a与0.8b的大小.
    解:因为4a=8,所以22a=23,所以2a=3,即a=eq \f(3,2).
    因为2m=9n=36,所以m=lg236,n=lg936.又因为eq \f(1,m)+eq \f(1,2n)=b,所以b=eq \f(1,lg236)+eq \f(1,2lg936)=lg362+eq \f(1,2)lg369=lg362+lg363=lg366=eq \f(1,2).
    因为y=1.5x在R上单调递增,y=0.8x在R上单调递减,
    所以1.5a=1.5eq \s\up8(\f(3,2))>1.50=1,0.8b=0.8eq \s\up8(\f(1,2))<0.80=1,
    所以1.5a>0.8b.
    [C级 提升练]
    15.设a>1,若∀x∈[a,2a],∃y∈[a,a2]满足方程lgax+lgay=3,这时a的取值的集合为( )
    A.{a|1C.{a|2≤a≤3} D.{2,3}
    解析:选B.由题意知,当x∈[a,2a]时,都有y=eq \f(a3,x)∈[a,a2].
    因为eq \f(a3,x)∈eq \b\lc\[\rc\](\a\vs4\al\c1(\f(a2,2),a2)),所以eq \b\lc\[\rc\](\a\vs4\al\c1(\f(a2,2),a2))⊆[a,a2],则eq \b\lc\{(\a\vs4\al\c1(\f(a2,2)≥a,,a>1,))所以a≥2.
    16.已知a,b为方程lg3x3+lg273x=-eq \f(4,3)的两个根,则a+b=________.
    解析:根据换底公式,有eq \f(lg33,lg33x)+eq \f(lg33x,lg327)=-eq \f(4,3),
    即eq \f(1,1+lg3x)+eq \f(1+lg3x,3)=-eq \f(4,3),
    令1+lg3x=t,则eq \f(1,t)+eq \f(t,3)=-eq \f(4,3),解得t=-1或t=-3.
    所以1+lg3x=-1或1+lg3x=-3,解得x=eq \f(1,9)或x=eq \f(1,81).故a+b=eq \f(10,81).
    答案:eq \f(10,81)
    相关试卷

    2022高考数学一轮总复习第二章函数概念与基本初等函数第2讲函数的单调性与最值集训含解析文: 这是一份2022高考数学一轮总复习第二章函数概念与基本初等函数第2讲函数的单调性与最值集训含解析文,共6页。

    2022高考数学一轮总复习第二章函数概念与基本初等函数第10讲函数与方程集训含解析文: 这是一份2022高考数学一轮总复习第二章函数概念与基本初等函数第10讲函数与方程集训含解析文,共5页。

    2022高考数学一轮总复习第二章函数概念与基本初等函数第5讲二次函数与幂函数集训含解析文: 这是一份2022高考数学一轮总复习第二章函数概念与基本初等函数第5讲二次函数与幂函数集训含解析文,共6页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2022高考数学一轮总复习第二章函数概念与基本初等函数第6讲指数对数运算集训含解析文 试卷
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map