所属成套资源:2022高考数学一轮总复习第一章集合与常用逻辑用语3讲+第二章函数概念与基本初等函数11讲
2022高考数学一轮总复习第二章函数概念与基本初等函数第3讲函数的奇偶性周期性学案文
展开
这是一份2022高考数学一轮总复习第二章函数概念与基本初等函数第3讲函数的奇偶性周期性学案文,共6页。学案主要包含了思考辨析,易错纠偏等内容,欢迎下载使用。
1.函数的奇偶性
2.周期性
(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.
(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.
常用结论
1.函数奇偶性的常用结论
(1)奇、偶函数定义域的特点是关于原点对称.函数的定义域关于原点对称是函数具有奇偶性的必要不充分条件.
(2)若奇函数f(x)在x=0处有定义,则f(0)=0.
(3)如果函数f(x)是偶函数,那么f(x)=f(|x|).
(4)奇函数在两个对称的区间上具有相同的单调性,偶函数在两个对称的区间上具有相反的单调性.
(5)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.
2.函数周期性常用结论
对f(x)定义域内任一自变量的值x:
(1)若f(x+a)=-f(x)成立,则T=2a(a>0).
(2)若f(x+a)=eq \f(1,f(x))成立,则T=2a(a>0).
(3)若f(x+a)=-eq \f(1,f(x))成立,则T=2a(a>0).
一、思考辨析
判断正误(正确的打“√”,错误的打“×”)
(1)若f(x)是定义在R上的奇函数,则f(-x)+f(x)=0.( )
(2)偶函数的图象不一定过原点,奇函数的图象一定过原点.( )
(3)如果函数f(x),g(x)为定义域相同的偶函数,则F(x)=f(x)+g(x)是偶函数.( )
(4)定义域关于原点对称是函数具有奇偶性的一个必要条件.( )
(5)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.( )
答案:(1)√ (2)× (3)√ (4)√ (5)√
二、易错纠偏
常见误区| (1)利用奇偶性求解析式忽视定义域;
(2)周期不能正确求出从而求不出结果.
1.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x(1+x),则x
相关学案
这是一份2022高考数学一轮总复习第二章函数概念与基本初等函数第10讲函数与方程学案文,共10页。
这是一份2022高考数学一轮总复习第二章函数概念与基本初等函数第1讲函数及其表示学案文,共12页。
这是一份2022高考数学一轮总复习第二章函数概念与基本初等函数第7讲指数函数学案文,共10页。学案主要包含了思考辨析,易错纠偏等内容,欢迎下载使用。