25一元一次方程的解法(提高)知识讲解练习题
展开
这是一份25一元一次方程的解法(提高)知识讲解练习题,共6页。
一元一次方程的解法(提高)知识讲解【学习目标】熟悉解一元一次方程的一般步骤,理解每步变形的依据;掌握一元一次方程的解法,体会解法中蕴涵的化归思想;进一步熟练掌握在列方程时确定等量关系的方法.【要点梳理】要点一、解一元一次方程的一般步骤变形名称具体做法注意事项去分母在方程两边都乘以各分母的最小公倍数(1)不要漏乘不含分母的项(2)分子是一个整体的,去分母后应加上括号去括号先去小括号,再去中括号,最后去大括号(1)不要漏乘括号里的项(2)不要弄错符号移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号)(1)移项要变号(2)不要丢项合并同类项把方程化成ax=b(a≠0)的形式字母及其指数不变系数化成1在方程两边都除以未知数的系数a,得到方程的解.不要把分子、分母写颠倒要点诠释:(1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化. (2) 去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行.(3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆.要点二、解特殊的一元一次方程1.含绝对值的一元一次方程解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义.要点诠释:此类问题一般先把方程化为的形式,再分类讨论:(1)当时,无解;(2)当时,原方程化为:;(3)当时,原方程可化为:或.2.含字母的一元一次方程 此类方程一般先化为最简形式ax=b,再分三种情况分类讨论:(1)当a≠0时,;(2)当a=0,b=0时,x为任意有理数;(3)当a=0,b≠0时,方程无解.【典型例题】类型一、解较简单的一元一次方程 1.关于x的方程2x﹣4=3m和x+2=m有相同的解,则m的值是( )A.10 B.-8 C.-10 D.8【答案】B.【解析】 解:由2x﹣4=3m得:x=;由x+2=m得:x=m﹣2由题意知=m﹣2解之得:m=﹣8.【总结升华】根据题目给出的条件,列出方程组,便可求出未知数.举一反三:【变式】下列方程的解法对不对?如果不对,错在哪里?应当怎样改正? 3x+2=7x+5 解:移项得3x+7x=2+5,合并得10x=7., 系数化为1得.【答案】以上的解法是错误的,其错误的原因是在移项时没有变号,也就是说将方程中右边的7x移到方程左边应变为-7x,方程左边的2移到方程右边应变为-2.正确解法: 解:移项得3x-7x=5-2, 合并得-4x=3,系数化为1得.类型二、去括号解一元一次方程2. 解方程:.【答案与解析】解法1:先去小括号得:. 再去中括号得:.移项,合并得:. 系数化为1,得:.解法2:两边均乘以2,去中括号得:. 去小括号,并移项合并得:,解得:.解法3:原方程可化为: . 去中括号,得. 移项、合并,得. 解得.【总结升华】解含有括号的一元一次方程时,一般方法是由内到外或由外到内逐层去括号,但有时根据方程的结构特点,灵活恰当地去括号,以使计算简便.例如本题的方法3:方程左、右两边都含(x-1),因此将方程左边括号内的一项x变为(x-1)后,把(x-1)视为一个整体运算.3.解方程:. 【答案与解析】解法1:(层层去括号) 去小括号. 去中括号. 去大括号. 移项、合并同类项,得,系数化为1,得x=30. 解法2:(层层去分母) 移项,得. 两边都乘2,得. 移项,得. 两边都乘2,得. 移项,得,两边都乘2,得.移项,得,系数化为1,得x=30.【总结升华】此题既可以按去括号的思路做,也可以按去分母的思路做. 举一反三:【变式】解方程.【答案】解:方程两边同乘2,得.移项、合并同类项,得. 两边同乘以3,得. 移项、合并同类项,得. 两边同乘以4,得. 移项,得,系数化为1,得x=5.类型三、解含分母的一元一次方程4.(2016春•淅川县期中)解方程﹣=.【思路点拨】方程整理后,去分母,去括号,移项合并同类项,把x系数化为1,即可求出解.【答案与解析】解:原方程可化为6x﹣=,两边同乘以6,得36x﹣21x=5x﹣7,移项合并,得10x=-7解得:x=﹣0.7.【总结升华】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解. 举一反三:【变式】解方程.【答案】解:原方程可化为. 去分母,得3(4y+9)-5(3+2y)=15. 去括号,得12y+27-15-10y=15. 移项、合并同类项,得2y=3.系数化为1,得.类型四、解含绝对值的方程5.解方程:3|2x|-2=0 .【思路点拨】将绝对值里面的式子看作整体,先求出整体的值,再求x的值.【答案与解析】解:原方程可化为: .当x≥0时,得,解得:, 当x<0时,得,解得:, 所以原方程的解是x=或x=.【总结升华】此类问题一般先把方程化为的形式,再根据()的正负分类讨论,注意不要漏解.举一反三:【变式】(2014秋•故城县期末)已知关于x的方程mx+2=2(m﹣x)的解满足方程|x﹣|=0,则m的值为( )A. B. 2 C. D.3【答案】B解:∵|x﹣|=0,∴x=,把x代入方程mx+2=2(m﹣x)得:m+2=2(m﹣),解之得:m=2.类型五、解含字母系数的方程6. 解关于的方程: 【答案与解析】解:原方程可化为:当,即时,方程有唯一解为:;当,即时,方程无解.【总结升华】解含字母系数的方程时,先化为最简形式,再根据系数是否为零进行分类讨论.举一反三:【变式】若关于x的方程(k-4)x=6有正整数解,求自然数k的值.【答案】解:∵原方程有解,∴ 原方程的解为:为正整数,∴应为6的正约数,即可为:1,2,3,6∴为:5,6,7,10答:自然数k的值为:5,6,7,10.
相关试卷
这是一份02相交线,垂线(提高)知识讲解练习题,共8页。
这是一份11平方根(提高)知识讲解练习题,共6页。
这是一份35直线、射线、线段(提高)知识讲解练习题,共7页。