所属成套资源:冀教版2022年数学中考一轮复习考点透析
考点02 整式与因式分解(解析版)-2022年数学中考一轮复习考点透析(冀教版)
展开
这是一份考点02 整式与因式分解(解析版)-2022年数学中考一轮复习考点透析(冀教版),共10页。试卷主要包含了代数式,整式,因式分解等内容,欢迎下载使用。
考点02 整式与因式分解、考点总结 一、代数式代数式的书写要注意规范,如乘号“×”用“·”表示或省略不写;分数不要用带分数;除号用分数线表示等.二、整式1.单项式:由数与字母或字母与字母相乘组成的代数式叫做单项式,所有字母指数的和叫做单项式的次数,数字因数叫做单项式的系数.注:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如,这种表示就是错误的,应写成;一个单项式中,所有字母的指数的和叫做这个单项式的次数。如是6次单项式。2.多项式:由几个单项式相加组成的代数式叫做多项式,多项式里次数最高的项的次数叫做这个多项式的次数,其中不含字母的项叫做常数项.3.整式:单项式和多项式统称为整式.4.同类项:多项式中所含字母相同并且相同字母的指数也相同的项,叫做同类项.5.整式的加减:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.6.幂的运算:am·an=am+n;(am)n=amn;(ab)n=anbn;am÷an=.7.整式的乘法:(1)单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:m(a+b+c)=ma+mb+mc.(3)多项式与多项式相乘:(m+n)(a+b)=ma+mb+na+nb.8.乘法公式:(1)平方差公式:. (2)完全平方公式:.9.整式的除法:(1)单项式除以单项式,把系数、同底数的幂分别相除,作为商的因式:对于只在被除式含有的字母,则连同它的指数作为商的因式.(2)多项式除以单项式:先把这个多项式的每一项除以单项式,再把所得的商相加.三、因式分解1.把一个多项式化成几个因式积的形式,叫做因式分解,因式分解与整式乘法是互逆运算.2.因式分解的基本方法:(1)提取公因式法:.(2)公式法:运用平方差公式:.运用完全平方公式:.3.分解因式的一般步骤:(1)如果多项式各项有公因式,应先提取公因式;(2)如果各项没有公因式,可以尝试使用公式法:为两项时,考虑平方差公式;为三项时,考虑完全平方公式;为四项时,考虑利用分组的方法进行分解;(3)检查分解因式是否彻底,必须分解到每一个多项式都不能再分解为止.以上步骤可以概括为“一提二套三检查”. 真题演练 一.选择题(共10小题)1.(2021•河北模拟)若(9m)2=312,则m的值为( )A.3 B.4 C.5 D.6【分析】化为同底数的幂的形式,列方程即可得到答案.【解答】解:∵(9m)2=312,∴34m=312,∴4m=12,∴m=3,故选:A.2.(2021•开平区一模)如果( )•m=m6,那么( )=( )A.m7 B.m6 C.m5 D.5m【分析】根据同底数幂的乘法法则解决此题.【解答】解:根据同底数幂的乘法,得m5•m=m6.故选:C.3.(2021•桥东区二模)关于﹣a﹣b进行的变形或运算:①﹣a﹣b=﹣(a+b);②(﹣a﹣b)2=(a+b)2;③|﹣a﹣b|=a﹣b;④(﹣a﹣b)3=﹣(a﹣b)3.其中不正确的是( )A.①② B.③④ C.①③ D.②④【分析】利用完全平方公式,绝对值的定义,去括号和添括号法则逐一判断即可.【解答】解:①﹣a﹣b=﹣(a+b),正确;②(﹣a﹣b)2=(a+b)2,正确;③|﹣a﹣b|=a+b,故原说法错误;④(﹣a﹣b)3=﹣(a+b)3,故原说法错误.其中不正确的有③④,故选:B.4.(2021•河北模拟)若k为正整数,则(k3)2表示的是( )A.2个k3相加 B.3个k2相加 C.2个k3相乘 D.5个k相乘【分析】根据幂的定义判断即可.【解答】解:(k3)2表示的是2个k3相乘.故选:C.5.(2021•安次区一模)计算a6×(﹣a2)的结果是( )A.a4 B.﹣a8 C.a8 D.﹣a4【分析】利用同底数的幂相乘,底数不变,指数相加,即可得到答案.【解答】解:a6×(﹣a2)=﹣a8,故选:B.6.(2021•开平区一模)古希腊著名的毕达哥拉斯学派把1,3,6,10......这样的数称为“三角形数”,而把1,4,9,16.......这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,根据上面的规律,用含有n(n为大于等于1的整数)的等式表示上面关系正确的是( )A.n+n+2=n2 B.n(n+3)=n2 C.(n+1)(n﹣1)=n2﹣1 D.【分析】根据特殊到一般的数学思想解决此题.【解答】解:第1个图形,(1+1)2=4=1+(1+2);第2个图形,(2+1)2=9=1+2+(1+2+3);第3个图形,(3+1)2=16=1+2+3+(1+2+3+4);第4个图形,(4+1)2=25=1+2+3+4+(1+2+3+4+5);…第n﹣1个图形,(n﹣1+1)2=n2=1+2+3+…+n﹣1+(1+2+3+…+n);第n个图形,(n+1)2=1+2+3+…+n+(1+2+3+…+n+n+1).∴.故选:D.7.(2021•桥东区二模)若(k>1,k,m都是正整数),则m的最小值为( )A.3 B.4 C.6 D.9【分析】提取公因式33,原式化为:3m,根据k>1,k,m都是正整数,求出k的最小值,进而求出m的最小值.【解答】解:原式化为:3m,∴k=3m÷33=3m﹣3,∵k>1,k,m都是正整数,∴k的最小值为3,∴m﹣3=1,∴m的最小值为4,故选:B.8.(2021•唐山一模)若1052﹣210×5+52=k+992﹣1,则k的值是( )A.100 B.105 C.200 D.205【分析】由1052﹣210×5+52=(105﹣5)2=1002=k+992﹣1=k+100×98,可得k的值.【解答】解:∵1052﹣210×5+52=(105﹣5)2=1002,k+992﹣1=k+(99+1)×(99﹣1)=k+100×98,∴k+100×98=1002,∴k=200.故选:C.9.(2021•鸡泽县模拟)我国古代数学的许多创新和发展都位居世界前列,如南宋数宁家杨辉(约13世纪)所著的《详解九章算术》一书中,用下图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.(a+b)0…①(a+b)1…①①(a+b)2…①②①(a+b)3…①③③①(a+b)4…①④⑥④①(a+b)5…①⑤⑩⑩⑤①…根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为( )A.2017 B.2016 C.191 D.190【分析】根据图形中的规律即可求出(a+b)20的展开式中第三项的系数.【解答】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(a+b)20第三项系数为1+2+3+…+19=190,故选:D.10.(2021•平泉市一模)下列运算正确的是( )A.x3+x3=2x6 B.(2x)3=6x3 C.2x2•3x=6x3 D.(2x﹣y)2=4x2﹣y2【分析】根据整式的加减运算以及乘法运算法则即可求出答案.【解答】解:A、原式=2x3,故A不符合题意.B、原式=8x3,故B不符合题意.C、原式=6x3,故C符合题意.D、原式=4x2﹣4xy+y2,故D不符合题意.故选:C.二.填空题(共5小题)11.(2021•河北模拟)已知a2+ab=0,b2﹣3ab=4.(1)3ab﹣b2= ﹣4 ;(2)a﹣b= ±2 .【分析】(1)加上一个负括号,然后整体代入;(2)已知两式相加,构成完全平方式,利用直接开平方法求解.【解答】解:(1)3ab﹣b2=﹣(b2﹣3ab)=﹣4;故答案为:﹣4;(2)∵a2+ab=0,b2﹣3ab=4,∴a2+ab+b2﹣3ab=4.即a2﹣2ab+b2=4.∴(a﹣b)2=4.∴a﹣b=±2.故答案为:±2.12.(2021•顺平县二模)如果一个两位数a的个位数字与十位数字都不是零,且互不相同,我们称这个两位数为“跟斗数”,定义新运算:将一个“跟斗数”的个位数字与十位数字对调,把这个新两位数与原两位数的和与11的商记ω(a),例如:a=13,对调个位数字与十位数字得到新两位数31,新两位数与原两位数的和,31+13=44,和与11的商44÷11=4,所以ω(13)=4.根据以上定义,回答下列问题:(1)计算:ω(23)= 5 .(2)若一个“跟斗数”b的十位数字是k,个位数字是2(k+1),且ω(b)=8,则“跟斗数”b= 26 .(3)若m,n都是“跟斗数”,且m+n=100,则ω(m)+ω(n)= 19 .【分析】(1)根据题目中“跟斗数”的定义,可以计算出f(23)的值;(2)根据题意,可以得到关于k的方程,从而可以求得k的值,然后即可得到b的值;(3)根据题意,可以表示出m、n,然后即可计算出f(m)+f(n)的值.【解答】解:(1).故答案为:5; (2)∵一个“跟斗数”b的十位数字是k,个位数字是2(k+1),且ω(b)=8,∴,解得k=2,∴2(k+1)=6,∴b=26.故答案为:26; (3)∵m,n都是“跟斗数”,且m+n=100,设m=10x+y,则n=10(9﹣x)+(10﹣y),∴ω(m)+ω(n) =x+y+19﹣x﹣y=19.故答案为:19.13.(2021•河北)现有甲、乙、丙三种不同的矩形纸片(边长如图).(1)取甲、乙纸片各1块,其面积和为 a2+b2 ;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片 4 块.【分析】(1)由图可知:一块甲种纸片面积为a2,一块乙种纸片的面积为b2,一块丙种纸片面积为ab,即可求解;(2)利用完全平方公式可求解.【解答】解:(1)由图可知:一块甲种纸片的面积为a2,一块乙种纸片的面积为b2,一块丙种纸片面积为ab,∴取甲、乙纸片各1块,其面积和为a2+b2,故答案为:a2+b2;(2)设取丙种纸片x块才能用它们拼成一个新的正方形,(x≥0)∴a2+4b2+xab是一个完全平方式,∴x为4,故答案为:4.14.(2021•丰润区一模)计算:(﹣a)6÷a3= a3 .【分析】同底数幂相除,底数不变,指数相减.据此计算即可.【解答】解:(﹣a)6÷a3=a6÷a3=a3.故答案为:a3.15.(2021•衡水模拟)若(2x+4y)2=4x2﹣2(m﹣1)xy+16y2,则m的值为 ﹣7 .【分析】利用完全平方公式的结构特征判断即可求出m的值.【解答】解:∵(2x+4y)2=4x2+16xy+16y2=4x2﹣2(m﹣1)xy+16y2,∴﹣2(m﹣1)=16,∴m=﹣7.故答案为:﹣7.三.解答题(共3小题)16.(2021•河北模拟)在数学课上,王老师出示了这样一道题目:“当a,b=﹣3时,求多项式2a2+4ab+2b2﹣2(a2+2ab+b2﹣1)的值.”解完这道题后,小明指出:“a,b=﹣3是多余的条件.”师生讨论后,一致认为小明的说法是正确的.(1)请你说明正确的理由;(2)受此启发,王老师又出示了一道题目:“已知无论x,y取什么值,多项式2x2﹣my+12﹣(nx2+3y﹣6)的值都等于定值18,求m+n的值.”请你解决这个问题.【分析】(1)去括号合并同类项可得代数式的值与a、b无关,即可得结论;(2)先求出m、n的值,再代入计算即可.【解答】解:(1)2a2+4ab+2b2﹣2(a2+2ab+b2﹣1)=2a2+4ab+2b2﹣2a2﹣4ab﹣2b2+2=2,∴该多项式的值为常数.与a和b的取值无关,小明的说法是正确的;(2)2x2﹣my+12﹣(nx2+3y﹣6)=2x2﹣my+12﹣nx2﹣3y+6=(2﹣n)x2+(﹣m﹣3)y+18,∵已知无论x,y取什么值,多项式2x2﹣my+12﹣(nx2+3y﹣6)的值都等于定值18,∴2﹣n=0,﹣m﹣3=0,解得n=2,m=﹣3,∴m+n=﹣3+2=﹣1.17.(2021•南皮县一模)已知:整式A=2x+1,B=2x﹣1.(1)化简A﹣2B;(2)若无论x为何值,A•B+k(k为常数)的值都是正数,求k的取值范围.【分析】(1)把相应的整式代入,再利用单项式乘多项式的法则,以及合并同类项的法则进行运算即可;(2)利用多项式乘多项式的法则进行运算,并结合条件进行分析即可.【解答】解:(1)A﹣2B=(2x+1)﹣2(2x﹣1)=2x+1﹣4x+2=﹣2x+3;(2)A•B+k=(2x+1)(2x﹣1)+k=4x2﹣1+k,∵无论x为何值时,4x2≥0,若A•B+k的值是正数,则﹣1+k>0,解得:k>1.18.(2021•开平区一模)(1)化简求值:(﹣m2+3+2m)﹣(5m﹣4+3m2),其中m=﹣2.(2)老师出了一道整式计算题化简求值题:(5x2﹣9)+(2+ax2),其中的字母a为常数;小明计算后说这个题的最后结果与x的取值无关,请你通过计算找到a的值.【分析】(1)先化简,再把给定字母的值代入计算,得出整式的值;(2)先化简,再根据计算后说这个题的最后结果与x的取值无关这个条件,列等式求出a.【解答】解:(1)(﹣m2+3+2m)﹣(5m﹣4+3m2)=﹣m2+3+2m﹣5m+4﹣3m2=﹣4m2﹣3m+7;把m=﹣2代入原式得,﹣4×(﹣2)2﹣3×(﹣2)+7=﹣3.(2)(5x2﹣9)+(2+ax2)=5x2﹣9+2+ax2=﹣7+(5+a)x2,∵计算后说这个题的最后结果与x的取值无关,∴5+a=0,∴a=﹣5.
相关试卷
这是一份中考数学一轮复习考点过关训练考点02 整式与因式分解(含解析),共1页。
这是一份初中数学中考复习 考点02 代数式、整式与因式分解 (解析版),共22页。
这是一份考点04整式运算(解析版)-2022年数学中考一轮复习考点透析(北京版),共11页。试卷主要包含了单项式及多项式,整式混合运算,幂的运算,完全平方公式及其几何背景,平方差公式及其几何背景等内容,欢迎下载使用。