- 考点05一元一次方程和二元一次方程(组)(解析版)练习题 试卷 2 次下载
- 考点06分式(解析版)练习题 试卷 1 次下载
- 考点08一元二次方程(解析版)练习题 试卷 1 次下载
- 考点09一元一次不等式(组)(解析版)练习题 试卷 1 次下载
- 考点10函数概念与平面直角坐标系(解析版)练习题 试卷 1 次下载
考点07分式方程(解析版)练习题
展开考点07分式方程
考点总结
考点1 分式方程
1、分式方程
分母里含有未知数的方程叫做分式方程。
2、分式方程的一般方法
解分式方程的思想是将“分式方程”转化为“整式方程”。它的一般解法是:
(1)去分母,方程两边都乘以最简公分母
(2)解所得的整式方程
(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。
3、分式方程的特殊解法
换元法:
换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。
4.分式方程的应用
考点2 分式方程的应用
1.由实际问题抽象出分式方程
由实际问题抽象出分式方程的关键是分析题意找出相等关系.
(1)在确定相等关系时,一是要理解一些常用的数量关系和一些基本做法,如行程问题中的相遇问题和追击问题,最重要的是相遇的时间相等、追击的时间相等.
(2)列分式方程解应用题要多思、细想、深思,寻求多种解法思路.
2.分式方程的应用
(1)列分式方程解应用题的一般步骤:设、列、解、验、答.
必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.
(2)要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间.
列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.
真题演练
一、单选题
1.(2021·浙江嘉兴·中考真题)为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中荧光棒共花费40元,缤纷棒共花费30元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为元( )
A. B. C. D.
【答案】B
【分析】
若设荧光棒的单价为元,根据等量关系“缤纷棒比荧光棒少20根”可列方程求解.
【详解】
解:设荧光棒的单价为元,则缤纷棒单价是元,由题意可得:
故选:B.
2.(2021·浙江湖州·模拟预测)解分式方程时,去分母正确的是( )
A. B.
C. D.
【答案】A
【分析】
方程两边同乘以(x-3)即可解答
【详解】
解:
方程两边同乘以(x-3)得,
故选:A.
3.(2021·浙江永嘉·一模)某童装店有几件不同款式的衣服,每件衣服的原价一样,6月1日儿童节那天,全场打7折,某宝妈在儿童节那天去购买该款式的衣服时发现:平时花350元购买到的衣服件数比现在少2件,设原价是x元,则根据题意可列出方程( )
A.= B.=
C.﹣2= D.=﹣2
【答案】D
【分析】
设原价是x元,则打折后的价格为0.7x元,利用数量=总价÷单价,结合平时花350元购买到的衣服件数比现在少2件,即可得出关于x的分式方程,此题得解.
【详解】
解:设原价是x元,则打折后的价格为0.7x元,
依题意得:2.
故选:D.
4.(2021·浙江余杭·一模)在一个不透明的盒子中装有4个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,它是白球的概率为,则黄球的个数为( ).
A.6 B.8 C.10 D.12
【答案】B
【分析】
结合题意,根据等可能事件概率的性质列方程并计算,即可得到答案.
【详解】
设黄球的个数为
根据题意得:
∴
∵
∴是的解
故选:B.
5.(2021·浙江宁波·二模)某种罐装凉茶一箱的价格为84元,某商场实行促销活动,买一箱送四罐,每罐的价格比原来便宜0.5元.设每箱凉茶有罐,则下列方程正确的是( )
A. B.
C. D.
【答案】B
【分析】
关键描述语是:“结果比用原价多买了4罐;等量关系为: 实际买每罐价格-促销每罐价格=0.5.
【详解】
解:原价每罐元,经过促销,每罐元,方程可表示为:,
故答案为:B.
6.(2021·浙江越城·一模)在一只不透明的口袋中放入红球5个,黑球1个,黄球n个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为,则放入口袋中的黄球总数n是( )
A.3 B.4 C.5 D.6
【答案】A
【分析】
根据概率公式列出关于n的分式方程,解方程即可得.
【详解】
解:根据题意可得=,
解得:n=3,
经检验n=3是分式方程的解,
即放入口袋中的黄球总数n=3,
故选:A.
二、填空题
7.(2021·浙江宁波·中考真题)在平面直角坐标系中,对于不在坐标轴上的任意一点,我们把点称为点A的“倒数点”.如图,矩形的顶点C为,顶点E在y轴上,函数的图象与交于点A.若点B是点A的“倒数点”,且点B在矩形的一边上,则的面积为_________.
【答案】或
【分析】
根据题意,点B不可能在坐标轴上,可对点B进行讨论分析:①当点B在边DE上时;②当点B在边CD上时;分别求出点B的坐标,然后求出的面积即可.
【详解】
解:根据题意,
∵点称为点的“倒数点”,
∴,,
∴点B不可能在坐标轴上;
∵点A在函数的图像上,
设点A为,则点B为,
∵点C为,
∴,
①当点B在边DE上时;
点A与点B都在边DE上,
∴点A与点B的纵坐标相同,
即,解得:,
经检验,是原分式方程的解;
∴点B为,
∴的面积为:;
②当点B在边CD上时;
点B与点C的横坐标相同,
∴,解得:,
经检验,是原分式方程的解;
∴点B为,
∴的面积为:;
故答案为:或.
8.(2020·浙江嘉兴·中考真题)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x人,则可列方程_____.
【答案】
【分析】
根据“第二次每人所得与第一次相同,”列分式方程即可得到结论.
【详解】
解:根据题意得,,
故答案为:
9.(2020·浙江杭州·中考真题)若分式的值等于1,则x=_____.
【答案】0
【分析】
根据分式的值,可得分式方程,根据解分式方程,可得答案.
【详解】
解:由分式的值等于1,得
=1,
解得x=0,
经检验x=0是分式方程的解.
故答案为:0.
10.(2021·浙江临安·一模)到2020年末,我国高铁运营里程约为3.8万公里,超过世界高铁总里程的60%,现有某高铁平均速度提升50km/h后,行驶700km用时和提速前行驶600km用时相同,求提速后该高铁的平均速度_________km/h.
【答案】350
【分析】
设这次列车提速后的平均速度为,利用行驶700km用时和提速前行驶600km用时相同,列方程即可求出答案.
【详解】
解:设这次列车提速后的平均速度为,则列车提速前的平均速度为,.
由题意列方程得
,
解得,
经检验得是原方程的解.
∴这次列车提速后的平均速度为km/h.
故答案为:350.
11.(2021·浙江·温州市教育教学研究院一模)2021年1月12日世界最大跨度铁路拱桥——贵州北盘江特大桥主体成功合拢.如图2所示,已知桥底呈抛物线,主桥底部跨度米,以O为原点,OA所在直线为x轴建立平面直角坐标系,桥面,抛物线最高点离路面距离米,米,,O,D,B三点恰好在同一直线上,则________米.
【答案】18
【分析】
根据题意设表达式为,得到E、F、B、D的坐标,可得CD,证明△BCD∽△OAB,得到,求出a值,可得CD.
【详解】
解:设抛物线,
则,,
∴,,
∴,
∵B,D,O共线,
∴∠CBD=∠AOB,又∠BCD=∠BAO=90°,
∴△BCD∽△OAB,
∴,
∴,
解得:,
经检验:是原方程的解,
∴.
故答案为:18.
三、解答题
12.(2021·浙江·中考真题)解分式方程:.
【答案】
【分析】
先将分式方程化成整式方程,然后求解,最后检验即可.
【详解】
解:
.
.
经检验,是原方程的解.
13.(2021·浙江温州·中考真题)某公司生产的一种营养品信息如下表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.
营养品信息表 | ||
营养成分 | 每千克含铁42毫克 | |
配料表 | 原料 | 每千克含铁 |
甲食材 | 50毫克 | |
乙食材 | 10毫克 | |
规格 | 每包食材含量 | 每包单价 |
A包装 | 1千克 | 45元 |
B包装 | 0.25千克 | 12元 |
(1)问甲、乙两种食材每千克进价分别是多少元?
(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.
①问每日购进甲、乙两种食材各多少千克?
②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A的数量不低于B的数量,则A为多少包时,每日所获总利润最大?最大总利润为多少元?
【答案】(1)甲、乙两种食材每千克进价分别为40元、20元;(2)①每日购进甲食材400千克,乙食材100千克;②当为400包时,总利润最大.最大总利润为2800元
【分析】
(1)设乙食材每千克进价为元,根据用80元购买的甲食材比用20元购买的乙食材多1千克列分式方程即可求解;
(2)①设每日购进甲食材千克,乙食材千克.根据每日用18000元购进甲、乙两种食材并恰好全部用完,利用进货总金额为180000元,含铁量一定列出二元一次方程组即可求解;
②设为包,根据题意,可以得到每日所获总利润与m的函数关系式,再根据A的数量不低于B的数量,可以得到m的取值范围,从而可以求得总利润的最大值.
【详解】
解:(1)设乙食材每千克进价为元,则甲食材每千克进价为元,
由题意得,解得.
经检验,是所列方程的根,且符合题意.
(元).
答:甲、乙两种食材每千克进价分别为40元、20元.
(2)①设每日购进甲食材千克,乙食材千克.
由题意得,解得
答:每日购进甲食材400千克,乙食材100千克.
②设为包,则为包.
记总利润为元,则
.
的数量不低于的数量,
,.
,随的增大而减小。
当时,的最大值为2800元.
答:当为400包时,总利润最大.最大总利润为2800元.
14.(2020·浙江·中考真题)某企业承接了27000件产品的生产任务,计划安排甲、乙两个车间的共50名工人,合作生产20天完成.已知甲、乙两个车间利用现有设备,工人的工作效率为:甲车间每人每天生产25件,乙车间每人每天生产30件.
(1)求甲、乙两个车间各有多少名工人参与生产?
(2)为了提前完成生产任务,该企业设计了两种方案:
方案一 甲车间租用先进生产设备,工人的工作效率可提高20%,乙车间维持不变.
方案二 乙车间再临时招聘若干名工人(工作效率与原工人相同),甲车间维持不变.
设计的这两种方案,企业完成生产任务的时间相同.
①求乙车间需临时招聘的工人数;
②若甲车间租用设备的租金每天900元,租用期间另需一次性支付运输等费用1500元;乙车间需支付临时招聘的工人每人每天200元.问:从新增加的费用考虑,应选择哪种方案能更节省开支?请说明理由.
【答案】(1)甲车间有30名工人参与生产,乙车间各有20名工人参与生产;(2)①乙车间需临时招聘5名工人;②选择方案一能更节省开支.
【分析】
(1)设甲、乙两车间各有x、y人,根据甲、乙两车间共有50人和甲、乙两车间20天共生产零件总数之和为2700个列方程组,解方程组即可解决问题;
(2)①设方案二中乙车间需临时招聘m名工人,根据“完成生产任务的时间相同”列分式方程求解即可;
②先求得企业完成生产任务所需的时间,分别求得需增加的费用,再比较即可解答.
【详解】
(1)设甲车间有x名工人参与生产,乙车间各有y名工人参与生产,由题意得:
,
解得.
∴甲车间有30名工人参与生产,乙车间各有20名工人参与生产;
(2)①设方案二中乙车间需临时招聘m名工人,由题意得:
=,
解得m=5.
经检验,m=5是原方程的解,且符合题意,
∴乙车间需临时招聘5名工人;
②企业完成生产任务所需的时间为:
=18(天).
∴选择方案一需增加的费用为900×18+1500=17700(元).
选择方案二需增加的费用为5×18×200=18000(元).
∵17700<18000,
∴选择方案一能更节省开支.
15.(2020·浙江温州·中考真题)某经销商3月份用18000元购进一批T恤衫售完后,4月份用39000元购进单批相同的T恤衫,数量是3月份的2倍,但每件进价涨了10元.
(1)4月份进了这批T恤衫多少件?
(2)4月份,经销商将这批T恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a件,然后将b件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.
①用含a的代数式表示b;
②已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.
【答案】(1)300件;(2)①;②3900元;
【分析】
(1)设3月份购进T恤x件,则该单价为元,4月份购进T恤2x件,根据等量关系,4月份数量是3月份的2倍可得方程,解得方程即可求得;
(2)①甲乙两家各150件T恤,甲店总收入为,乙店总收入为,甲乙利润相等,根据等量关系可求得ab关系式;②根据题意可列出乙店利润关于a的函数式,由以及①中的关系式可得到a的取值范围,进而可求得最大利润.
【详解】
(1)设3月份购进T恤x件,
由题意得:,解得x=150,
经检验x=150是分式方程的解,符合题意,
∵4月份是3月份数量的2倍,
∴4月份购进T恤300件;
(2)①由题意得,甲店总收入为,
乙店总收入为,
∵甲乙两店利润相等,成本相等,
∴总收入也相等,
∴=,
化简可得,
∴用含a的代数式表示b为:;
②乙店利润函数式为,
结合①可得,
因为,,
∴,∴=3900,
即最大利润为3900元.
2022年中考数学真题考点分类专练专题07分式方程(含解析): 这是一份2022年中考数学真题考点分类专练专题07分式方程(含解析),共14页。试卷主要包含了⊗x,则x的值为 等内容,欢迎下载使用。
2022-2023 数学浙教版中考考点经典导学 考点07分式方程: 这是一份2022-2023 数学浙教版中考考点经典导学 考点07分式方程,文件包含2022-2023数学浙教版中考考点经典导学考点07分式方程解析版docx、2022-2023数学浙教版中考考点经典导学考点07分式方程原卷版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
初中数学中考复习 考点07 分式方程及其应用(原卷版): 这是一份初中数学中考复习 考点07 分式方程及其应用(原卷版),共8页。