终身会员
搜索
    上传资料 赚现金
    中考数学二轮总复习(解答题)突破训练:专题十二《二次函数与角有关的探究》(教师版)
    立即下载
    加入资料篮
    中考数学二轮总复习(解答题)突破训练:专题十二《二次函数与角有关的探究》(教师版)01
    中考数学二轮总复习(解答题)突破训练:专题十二《二次函数与角有关的探究》(教师版)02
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学二轮总复习(解答题)突破训练:专题十二《二次函数与角有关的探究》(教师版)

    展开
    这是一份中考数学二轮总复习(解答题)突破训练:专题十二《二次函数与角有关的探究》(教师版),共5页。


    (1)求抛物线的解析式;
    (2)是否存在点P,使∠APB=90°,若存在,求出点P的横坐标,若不存在,说明理由;
    (3)连接BQ,一动点M从点B出发,沿线段BQ以每秒1个单位的速度运动到Q,再沿线段QD以每秒eq \r(2)个单位的速度运动到D后停止,当点Q的坐标是多少时,点M在整个运动过程中用时t最少?
    解:(1)抛物线的解析式为y=x2-2x-3;
    (2)假设存在点P(m,n),使得∠APB=90°,
    如解图①,连接PA,PB.
    ∵PH⊥AB,
    ∴可得△PAH∽△BPH,∴eq \f(PH,BH)=eq \f(AH,PH),即PH2=AH·BH,
    ∴(-n)2=(3-m)(m+1),整理得n2=-m2+2m+3,
    ∵点P在抛物线上,∴n=m2-2m-3,
    ∴n2=-n,解得n=-1或n=0(舍).
    将n=-1代入抛物线得m2-2m-3=-1,解得m1=1+eq \r(3),m2=1-eq \r(3),
    ∴满足条件的点P有两个,横坐标分别为1+eq \r(3),1-eq \r(3);
    图① 图②
    (3)如解图②,过D作DE⊥x轴于点E,
    ∵D(-2,5),∴DE=5,OE=2.
    ∴AE=OE+OA=5,
    ∴DE=AE,
    ∴∠DAE=45°.
    过D作DF⊥PQ于点F,∵DF∥x轴,
    ∴∠FDQ=45°,
    ∴在Rt△DFQ中,DQ=eq \r(2)FQ.
    根据题意,t=eq \f(BQ,1)+eq \f(DQ,\r(2))=BQ+FQ,
    ∴要使t最小,则BQ+QF最小,
    根据垂线段最短可知,当点B,Q,F共线时,t取最小值,
    此时BF⊥DF,点Q的横坐标为-1,则点Q的坐标为(-1,4).
    2.如图,在平面直角坐标系中,直线y=eq \f(1,2)x+2与x轴交于点A,与y轴交于点C,抛物线y=-eq \f(1,2)x2+bx+c经过A,C两点,与x轴的另一交点为点B.
    (1)求抛物线的函数表达式;
    (2)点D为直线AC上方抛物线上一动点;
    ①连接BC,CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求eq \f(S1,S2)的最大值;
    ②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.
    备用图
    解:(1)抛物线的表达式为y=-eq \f(1,2)x2-eq \f(3,2)x+2;
    (2)①令y=-eq \f(1,2)x2-eq \f(3,2)x+2=0,∴x1=-4,x2=1,
    ∴A(-4,0),B(1,0),
    如解图①,过D作DM⊥x轴交AC于点M,过B作BN⊥x轴交AC于点N,
    ∴DM∥BN,∴△DME∽△BNE,∴eq \f(S1,S2)=eq \f(DE,BE)=eq \f(DM,BN),设D(a,-eq \f(1,2)a2-eq \f(3,2)a+2),
    ∴M(a,eq \f(1,2)a+2),∴DM=-eq \f(1,2)a2-2a,∵B(1,0),∴N(1,eq \f(5,2)),∴BN=eq \f(5,2).
    ∴eq \f(S1,S2)=eq \f(DM,BN)=eq \f(-\f(1,2)a2-2a,\f(5,2))=-eq \f(1,5)(a+2)2+eq \f(4,5);∴当a=-2时,eq \f(S1,S2)的最大值是eq \f(4,5);
    图① 图②
    ②∵A(-4,0),B(1,0),C(0,2),
    ∴AC=2eq \r(5),BC=eq \r(5),AB=5,∴AC2+BC2=AB2,
    ∴△ABC是以∠ACB为直角的直角三角形,取AB的中点P,
    ∴P(-eq \f(3,2),0),∴PA=PC=PB=eq \f(5,2),∴∠CPO=2∠BAC,
    ∴tan∠CPO=tan(2∠BAC)=eq \f(4,3),
    过D作x轴的平行线交y轴于点R,交AC的延长线于点G,
    i.如解图②,∴∠DCF=2∠BAC=∠DGC+∠CDG,
    ∴∠CDG=∠BAC,
    ∴tan∠CDG=tan∠BAC=eq \f(1,2),即eq \f(RC,DR)=eq \f(1,2),
    令D(a,-eq \f(1,2)a2-eq \f(3,2)a+2),∴DR=-a,RC=-eq \f(1,2)a2-eq \f(3,2)a,
    ∴eq \f(-\f(1,2)a2-\f(3,2)a,-a)=eq \f(1,2),∴a1=0(舍去),a2=-2,
    ∴xD=-2,ii.∵∠FDC=2∠BAC,tan∠FDC=eq \f(4,3),
    设FC=4k,∴DF=3k,DC=5k,
    ∵tan∠DGC=eq \f(3k,FG)=eq \f(1,2),∴FG=6k,∴CG=2k,DG=3eq \r(5)k,
    ∴RC=eq \f(2\r(5),5)k,RG=eq \f(4\r(5),5)k,DR=3eq \r(5)k-eq \f(4\r(5),5)k=eq \f(11\r(5),5)k,
    ∴eq \f(DR,RC)=eq \f(\f(11\r(5),5)k,\f(2\r(5),5)k)=eq \f(-a,-\f(1,2)a2-\f(3,2)a),∴a1=0(舍去),a2=-eq \f(29,11),
    点D的横坐标为-2或-eq \f(29,11).
    3.如图,在平面直角坐标系中,已知抛物线y=ax2+bx-2(a≠0)与x轴交于A(1,0),B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为(0,-1),该抛物线与BE交于另一点F,连接BC.
    (1)求该抛物线的解析式,并用配方法把解析式化为y=a(x-h)2+k的形式;
    (2)若点H(1,y)在BC上,连接FH,求△FHB的面积;
    (3)一动点M从点D出发,以每秒1个单位的速度平行于y轴方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?
    (4)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.
    解:(1)抛物线的解析式为y=-eq \f(2,3)x2+eq \f(8,3)x-2=-eq \f(2,3)(x-2)2+eq \f(2,3);
    (2)如解图,过点A作AH∥y轴交BC于点H,交BE于点G,由(1)得C(0,-2),
    ∵B(3,0),∴直线BC解析式为y=eq \f(2,3)x-2,
    ∵H(1,y)在直线BC上,∴y=-eq \f(4,3),∴H(1,-eq \f(4,3)),
    ∵B(3,0),E(0,-1),∴直线BE解析式为y=eq \f(1,3)x-1,
    ∴G(1,-eq \f(2,3)),∴GH=eq \f(2,3),
    ∵直线BE:y=eq \f(1,3)x-1与抛物线y=-eq \f(2,3)x2+eq \f(8,3)x-2相交于点F,B,
    ∴F(eq \f(1,2),-eq \f(5,6)),
    ∴S△FHB=eq \f(1,2)GH×|xG-xF|+eq \f(1,2)GH×|xB-xG|=eq \f(1,2)GH×|xB-xF|=eq \f(1,2)×eq \f(2,3)×(3-eq \f(1,2))=eq \f(5,6);
    (3)P(eq \f(3,2),eq \f(1),\s\d5(2))).
    相关试卷

    中考数学二轮总复习(解答题)突破训练:专题四《与三角形、四边形有关的探究题》(原卷版): 这是一份中考数学二轮总复习(解答题)突破训练:专题四《与三角形、四边形有关的探究题》(原卷版),共3页。试卷主要包含了问题背景等内容,欢迎下载使用。

    中考数学二轮总复习(解答题)突破训练:专题十二《二次函数与角有关的探究》(原卷版): 这是一份中考数学二轮总复习(解答题)突破训练:专题十二《二次函数与角有关的探究》(原卷版),共3页。

    中考数学二轮总复习(解答题)突破训练:专题五《与图形的变换结合的探究题》(教师版): 这是一份中考数学二轮总复习(解答题)突破训练:专题五《与图形的变换结合的探究题》(教师版),共35页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        中考数学二轮总复习(解答题)突破训练:专题十二《二次函数与角有关的探究》(教师版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map