中考数学二轮总复习(解答题)突破训练:专题八《二次函数与线段问题结合》(原卷版)
展开(1)求抛物线的解析式;
(2)如图①,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;
(3)如图②,直线AB分别交x轴,y轴于C,D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒eq \r(2) 个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.
图① 图②
2.如图,在平面直角坐标系中,抛物线y=ax2+bx+2经过点A(-1,0)和点B(4,0),且与y轴交于点C,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点,连接CA,CD,PD,PB.
(1)求该抛物线的解析式;
(2)当△PDB的面积等于△CAD的面积时,求点P的坐标;
(3)当m>0,n>0时,过点P作直线PE⊥y轴于点E交直线BC于点F,过点F作FG⊥x轴于点G,连接EG,请直接写出随着点P的运动,线段EG的最小值.
3.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c交x轴于A,B两点,交y轴于点C,直线y=x-3经过B,C两点.
(1)求抛物线的解析式;
(2)过点C作直线CD⊥y轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE⊥x轴于点E,PE交CD于点F,交BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);
(3)在(2)的条件下,连接PC,过点B作BQ⊥PC于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长.
中考数学二轮总复习(解答题)突破训练:专题十一《二次函数与相似三角形结合》(原卷版): 这是一份中考数学二轮总复习(解答题)突破训练:专题十一《二次函数与相似三角形结合》(原卷版),共3页。
中考数学二轮总复习(解答题)突破训练:专题十《二次函数与面积问题结合》(原卷版): 这是一份中考数学二轮总复习(解答题)突破训练:专题十《二次函数与面积问题结合》(原卷版),共3页。
中考数学二轮总复习(解答题)突破训练:专题七《二次函数与图形判定结合》(原卷版): 这是一份中考数学二轮总复习(解答题)突破训练:专题七《二次函数与图形判定结合》(原卷版),共3页。