搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷冀教版八年级数学下册第二十一章一次函数章节测评试卷(无超纲)

    精品试卷冀教版八年级数学下册第二十一章一次函数章节测评试卷(无超纲)第1页
    精品试卷冀教版八年级数学下册第二十一章一次函数章节测评试卷(无超纲)第2页
    精品试卷冀教版八年级数学下册第二十一章一次函数章节测评试卷(无超纲)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第二十一章 一次函数综合与测试同步达标检测题

    展开

    这是一份冀教版八年级下册第二十一章 一次函数综合与测试同步达标检测题,共30页。试卷主要包含了点A,若点等内容,欢迎下载使用。
    八年级数学下册第二十一章一次函数章节测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、若实数、满足且,则关于的一次函数的图像可能是( )
    A. B. C. D.
    2、如图,函数和的图像相交于点P(1,m),则不等式的解集为( )

    A. B. C. D.
    3、已知点,都在直线上,则与的大小关系为( )
    A. B. C. D.无法比较
    4、如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是( )

    A. B.
    C. D.
    5、点A(3,)和点B(-2,)都在直线y=-2x+3上,则和的大小关系是( )
    A. B. C. D.不能确定
    6、如图,在Rt△ABO中,∠OBA=90°,A(4,4),且,点D为OB的中点,点P为边OA上的动点,使四边形PDBC周长最小的点P的坐标为( )

    A.(2,2) B.(,) C.(,) D.(,)
    7、如图,在平面直角坐标系中,线段AB的端点为A(﹣2,1),B(1,2),若直线y=kx﹣1与线段AB有交点,则k的值不能是(  ).

    A.-2 B.2
    C.4 D.﹣4
    8、如图,已知直线与轴交于点,与轴交于点,以点为圆心、长为半径画弧,与轴正半轴交于点,则点的坐标为( )

    A. B. C. D.
    9、若点(-3,y1)、(2,y2)都在函数y=-4x+b的图像上,则y1与y2的大小关系( )
    A.y1>y2 B.y1<y2 C.y1=y2 D.无法确定
    10、在平面直角坐标系中,正比例函数y =kx(k<0)的图象的大致位置只可能是( )
    A. B.
    C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、甲、乙两车分别从,两地同时相向匀速行驶,当乙车到达地后,继续保持原速向远离的方向行驶,而甲车到达地后立即掉头,并保持原速与乙车同向行驶,经过12小时后两车同时到达距地300千米的地(中途休息时间忽略不计).设两车行驶的时间为(小时),两车之间的距离为(千米),与之间的函数关系如图所示,则当甲车到达地时,乙车距地 __千米.

    2、若一次函数的图象经过点,且不经过第四象限,则的取值范围为______.
    3、根据如图所示的程序计算函数值,若输入x的值为,则输出的y值为_.

    4、在平面直角坐标系xOy中,点A点B的坐标分别是(4,8),(12,0),则△AOB的重心G的坐标是 _____.
    5、如图,已知函数y=ax+b和y=kx的图象交于点P,则二元一次方程组的解是________;当ax+b≤kx时,x的取值范围是____________.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在平面直角坐标系中,直线与直线相交于点.

    (1)求m,b的值;
    (2)求的面积;
    (3)点P是x轴上的一点,过P作垂于x轴的直线与的交点分别为C,D,若P点的横坐标为n,当时直接写出n的取值范围.
    2、已知一次函数 y=-x+2.
    (1)求这个函数的图像与两条坐标轴的交点坐标;
    (2)在平面直角坐标系中画出这个函数的图像;
    (3)结合函数图像回答问题:
    ①当 x>0 时,y 的取值范围是 ;
    ②当 y<0 时,x 的取值范围是 .
    3、如图,已知直线l1:y=kx+2与x轴相交于点A,与y轴相交于点B,且AB=;直线l2经过点(2,2)且平行于直线y=−2x.直线l2与x轴交于点C,与y轴交于点D,与直线l1交于点N.

    (1)求k的值;
    (2)求四边形OCNB的面积;
    (3)若线段CD上有一动点P(不含端点),过P点作x轴的垂线,垂足为M.设点P的横坐标为m.若PM≤3,求m的取值范围.
    4、如图,在平面直角坐标系中,点,,,且,,满足关于,的二元一次方程,直线经过点,且直线轴,点为直线上的一个动点,连接,,.

    (1)求,,的值;
    (2)在点运动的过程中,当三角形的面积等于三角形的面积的时,求的值;
    (3)在点运动的过程中,当取得最小值时,直接写出的值.
    5、如图1,一次函数y=x+4的图象与x轴、y轴分别交于点A、B.

    (1)则点A的坐标为_______,点B的坐标为______;
    (2)如图2,点P为y轴上的动点,以点P为圆心,PB长为半径画弧,与BA的延长线交于点E,连接PE,已知PB=PE,求证:∠BPE=2∠OAB;
    (3)在(2)的条件下,如图3,连接PA,以PA为腰作等腰三角形PAQ,其中PA=PQ,∠APQ=2∠OAB.连接OQ.
    ①则图中(不添加其他辅助线)与∠EPA相等的角有______;(都写出来)
    ②试求线段OQ长的最小值.

    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    根据实数、满足可知,、互为相反数,再根据,可确定、的符号,进而确定图象的大致位置.
    【详解】
    解:∴实数、满足,
    ∴、互为相反数,
    ∵,
    ∴,,

    ∴一次函数的图像经过二、三、四象限,
    故选:B.
    【点睛】
    本题考查了一次函数图象的性质,解题关键是根据已知条件,确定、的符号.
    2、B
    【解析】
    【分析】
    由题意首先确定y=mx和y=kx-b的交点以及作出y=kx-b的大体图象,进而根据图象进行判断即可.
    【详解】
    解:∵y=kx+b的图象经过点P(1,m),
    ∴k+b=m,
    当x=-1时,kx-b=-k-b=-(k+b)=-m,
    即(-1,-m)在函数y=kx-b的图象上.
    又∵(-1,-m)在y=mx的图象上.
    ∴y=kx-b与y=mx相交于点(-1,-m).
    则函数图象如图.

    则不等式-b≤kx-b≤mx的解集为-1≤x≤0.
    故选:B.
    【点睛】
    本题考查一次函数与不等式的关系,运用数形结合思维分析并正确确定y=kx-b和y=mx的交点是解题的关键.
    3、A
    【解析】
    【分析】
    根据一次函数的增减性分析,即可得到答案.
    【详解】
    ∵直线上,y随着x的增大而减小
    又∵

    故选:A.
    【点睛】
    本题考查了一次函数的增减性;解题的关键是熟练掌握一次函数图像的性质,从而完成求解.
    4、A
    【解析】
    【分析】
    分三段来考虑点P沿A→D运动,的面积逐渐变大;点P沿D→C移动,的面积不变;点P沿C→B的路径移动,的面积逐渐减小,同时考虑各段的函数解析式,据此选择即可得.
    【详解】
    解:如图,过点B作BH⊥DA交DA的延长线于H,设BH=h,则当点P在线段AD上时,,h是定值,y是x的一次函数,

    点P沿A→D运动,的面积逐渐变大,且y是x的一次函数,
    点P沿D→C移动,的面积不变,
    点P沿C→B的路径移动,的面积逐渐减小,同法可知y是x的一次函数,
    故选:A.
    【点睛】
    本题以动点问题为背景,考查了分类讨论的数学思想以及函数图象的变化规律,理解题意,作出辅助线是解题关键.
    5、C
    【解析】
    【分析】
    利用一次函数的增减性性质判定即可.
    【详解】
    ∵直线y=-2x+3的k=-2<0,
    ∴y随x的增大而减小,
    ∵-2<3,
    ∴,
    故选C.
    【点睛】
    本题考查了一次函数的增减性,熟练掌握性质是解题的关键.
    6、C
    【解析】
    【分析】
    先确定点D关于直线AO的对称点E(0,2),确定直线CE的解析式,直线AO的解析式,两个解析式的交点就是所求.
    【详解】
    ∵∠OBA=90°,A(4,4),且,点D为OB的中点,
    ∴点D(2,0),AC=1,BC=3,点C(4,3),
    设直线AO的解析式为y=kx,
    ∴4=4k,
    解得k=1,
    ∴直线AO的解析式为y=x,
    过点D作DE⊥AO,交y轴于点E,交AO于点F,
    ∵∠OBA=90°,A(4,4),
    ∴∠AOE=∠AOB=45°,
    ∴∠OED=∠ODE=45°,OE=OD,
    ∴DF=FE,
    ∴点E是点D关于直线AO的对称点,
    ∴点E(0,2),
    连接CE,交AO于点P,此时,点P是四边形PCBD周长最小的位置,
    设CE的解析式为y=mx+n,

    ∴,
    解得,
    ∴直线CE的解析式为y=x+2,
    ∴y=14x+2y=x,
    解得,
    ∴使四边形PDBC周长最小的点P的坐标为(,),
    故选C.
    【点睛】
    本题考查了一次函数的解析式,将军饮马河原理,熟练掌握待定系数法和将军饮马河原理是解题的关键.
    7、B
    【解析】
    【分析】
    当直线y=kx−1过点A时,求出k的值,当直线y=kx−1过点B时,求出k的值,介于二者之间的值即为使直线y=kx−1与线段AB有交点的x的值.
    【详解】
    解:①当直线y=kx−1过点A时,将A(−2,1)代入解析式y=kx−1得,k=−1,
    ②当直线y=kx−1过点B时,将B(1,2)代入解析式y=kx−1得,k=3,
    ∵|k|越大,它的图象离y轴越近,
    ∴当k≥3或k≤-1时,直线y=kx−1与线段AB有交点.
    故选:B.
    【点睛】
    本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线.
    8、C
    【解析】
    【分析】
    求出点A、点坐标,求出长即可求出点的坐标.
    【详解】
    解:当x=0时,,点B的坐标为(0,-1);当y=0时,,解得,,点A的坐标为(2,0);
    即,,;
    以点为圆心、长为半径画弧,与轴正半轴交于点,
    故,则,
    点C的坐标为;
    故选:C
    【点睛】
    本题考查了一次函数与坐标轴交点坐标和勾股定理,解题关键是求出一次函数与坐标轴交点坐标,利用勾股定理求出线段长.
    9、A
    【解析】
    【分析】
    根据一次函数的性质得出y随x的增大而减小,进而求解.
    【详解】
    由一次函数y=-4x+b可知,k=-4<0,y随x的增大而减小,
    ∵-3<2,
    ∴y1>y2,
    故选:A.
    【点睛】
    本题考查一次函数的性质,熟知一次函数y=kx+b(k≠0),当k<0时,y随x的增大而减小是解题的关键.
    10、A
    【解析】

    二、填空题
    1、100
    【解析】
    【分析】
    由图象可知甲车从A地到地用了4小时,从地到地用小时,乙从地到地用了12小时,进而求得甲车的速度,A、两地的距离,乙车的速度,然后根据甲车到达地的时间求解乙车距A地的距离即可.
    【详解】
    解:由图象可知,甲车从A地到地用了4小时,从地到地用小时,乙从地到地用了12小时
    ∴甲车的速度是(千米时)
    ∴、两地之间的距离是千米
    ∴乙车的速度是(千米时)
    ∵甲车到达地时,用时4小时
    ∴此时乙车距A地(千米)
    故答案为:100.
    【点睛】
    本题以行程问题为背景的函数图象的应用.解题的关键是根据函数图象理解题意,求得两车的速度.
    2、
    【解析】
    【分析】
    把点代入得,根据一次函数不经过第四象限求得取值范围即可求得结论.
    【详解】
    解:∵一次函数的图象经过点,


    ∵一次函数不经过第四象限
    ∴,即
    解得,



    故答案为:
    【点睛】
    本题主要考查了一次函数的图象与性质,求出是解答本题的关键.
    3、##
    【解析】
    【分析】
    根据x的值选择相应的函数关系式求解函数值即可解答.
    【详解】
    解:∵x=,
    ∴1<x<2,
    ∴y=-x+2=-+2=,
    即输出的y值为,
    故答案为:.
    【点睛】
    本题考查求一次函数的函数值,明确每段函数的自变量取值范围是解答的关键.
    4、##
    【解析】
    【分析】
    分别求得的中点的坐标,进而求得直线的交点坐标即可求得重心G的坐标.三角形的重心为三角形三条中线的交点.
    【详解】
    解:如图,点A点B的坐标分别是(4,8),(12,0),

    ,
    设直线的解析式为,


    解得
    直线的解析式为
    设直线的解析式为,


    解得
    直线的解析式为,
    则即为的重心

    解得

    故答案为:
    【点睛】
    本题考查了三角形重心的定义,待定系数法求一次函数解析式,中点坐标公式,求两直线解析式,掌握三角形的重心的定义是解题的关键.
    5、 x ≥-4
    【解析】
    【分析】
    根据图像可知,函数和交于点P(-4,-2),即可得二元一次方程组的解;根据函数图像可知,当时,.
    【详解】
    解:根据图像可知,函数和交于点P(-4,-2),
    则二元一次方程组的解是,
    由图像可知,当时,,
    故答案为:;.
    【点睛】
    本题考查了一次函数与二元一次方程组,解题的关键是掌握一次函数的性质.
    三、解答题
    1、 (1)m=2,b=3
    (2)12
    (3)或
    【解析】
    【分析】
    (1)先根据直线l2求出m的值,再将点B(m,4)代入直线l1即可得b的值.
    (2)求出点A坐标,结合点B坐标,利用三角形面积公式计算即可;
    (3)求出点C和点D的纵坐标,再分C、D在点B左侧和右侧两种情况分别求解.
    (1)
    解:∵点B(m,4)直线l2:y=2x上,
    ∴4=2m,
    ∴m=2,
    ∴点B(2,4),
    将点B(2,4)代入直线得:,
    解得b=3;
    (2)
    将y=0代入,得:x=-6,
    ∴A(-6,0),
    ∴OA=6,
    ∴△AOB的面积==12;
    (3)
    令x=n,则,,
    当C、D在点B左侧时,
    则,
    解得:;
    当C、D在点B右侧时,
    则,
    解得:;
    综上:n的取值范围为或.
    【点睛】
    本题是一次函数综合题,考查两条直线平行、相交问题,三角形的面积,解题的关键是灵活应用待定系数法,学会利用图象,根据条件确定自变量取值范围.
    2、 (1)这个函数的图像与坐标轴的交点为(0,2),(2,0);
    (2)见解析
    (3)①y<2;②x>2
    【解析】
    【分析】
    (1)令x=0,求函数与y轴的交点,令y=0,求函数与x轴的交点;
    (2)两点法画出函数图象;
    (3)通过观察函数图象求解即可.
    (1)
    解:令x=0,则y=2,
    令y=0,则x=2,
    ∴这个函数的图像与坐标轴的交点为(0,2),(2,0);
    (2)
    解:这个函数的图像如图所示:

    (3)
    解:①观察图像可知:当x>0时,y<2,
    故答案为:y<2;
    ②观察图像可知:当y<0时,x>2,
    故答案为:x>2.
    【点睛】
    本题考查了一次函数的图象及性质,熟练掌握一次函数的图象及性质,数形结合解题是关键.
    3、 (1)k=2;
    (2)7;
    (3)≤m≤3
    【解析】
    【分析】
    (1)利用勾股定理求得B (-1,0),再利用待定系数法即可求解;
    (2)先求得直线l2的解析式,分别求得D、C、N的坐标,再利用四边形OCNB的面积=S△ODC- S△NBD求解即可;
    (3)先求得点P的纵坐标,根据题意列不等式组求解即可.
    (1)
    解:令x=0,则y=2;
    ∴B (0,2),
    ∴OB=2,
    ∵AB=;
    ∴OA=1,
    ∴A (-1,0),
    把B (-1,0)代入y=kx+2得:0=-k+2,
    ∴k=2;
    (2)
    解:∵直线l2平行于直线y=−2x.
    ∴设直线l2的解析式为y=−2x+b.
    把(2,2)代入得2=−22+b,
    解得:b=6,
    ∴直线l2的解析式为.
    令x=0,则y=6,则D (0,6);令y=0,则x=3,则C (3,0),
    由(1)得直线l1的解析式为.
    解方程组得:,
    ∴N (1,4),
    四边形OCNB的面积=S△ODC- S△NBD
    =
    =7;
    (3)
    解:∵点P的横坐标为m,
    ∴点P的纵坐标为,
    ∴PM=,
    ∵PM≤3,且点P在线段CD上,
    ∴≤3,且m≤3.
    解得:≤m≤3.
    【点睛】
    本题考查了两条直线相交与平行问题,待定系数法求函数的解析式,三角形的面积,正确的理解题意是解题的关键.
    4、 (1),,
    (2)或
    (3)
    【解析】
    【分析】
    (1)根据二次根式有意义的条件求出c,根据二元一次方程的定义列出方程组,解方程组求出a、b;
    (2)根据三角形的面积公式求出△AOB的面积,根据S△ABD=×S△AOB求出S△ABD,根据三角形的面积公式计算,得到答案;
    (3)利用待定系数法求出直线AB的解析式,进而求出m.
    (1)
    由和可知,,,

    由二元一次方程的定义,得,
    解得:,
    ,,;
    (2)
    设与直线交于,连接,

    由(1)可知:,,,



    ,即,
    解得:,


    解得:或;
    (3)
    当取得最小值时,点在上,
    设直线的解析式为:,
    则,
    解得:,
    直线的解析式为:,
    当时,,
    的值为.
    【点睛】
    本题考查的是二次根式有意义的条件、二元一次方程的定义、三角形的面积计算、函数解析式的确定,掌握待定系数法求一次函数解析式的一般步骤是解题的关键.
    5、 (1)(-3,0);(0,4)
    (2)证明见解析
    (3)①∠QPO,∠BAQ;②线段OQ长的最小值为
    【解析】
    【分析】
    (1)根据题意令x=0,y=0求一次函数与坐标轴的交点;
    (2)由题意可知与∠EPA相等的角有∠QPO,∠BAQ.利用三角形内角和定理解决问题;
    (3)根据题意可知如图3中,连接BQ交x轴于T.证明△APE≌△QPB(SAS),推出∠AEP=∠QBP,再证明OA=OT,推出直线BT的解析式为为:,推出点Q在直线y=﹣x+4上运动,再根据垂线段最短,即可解决问题.
    (1)
    解:在y=x+4中,令y=0,得0=x+4,
    解得x=﹣3,
    ∴A(﹣3,0),
    在y=x+4中,令x=0,得y=4,
    ∴B(0,4);
    故答案为:(﹣3,0),(0,4).
    (2)
    证明:如图2中,设∠ABO=α,则∠OAB=90°﹣α,
    ∵PB=PE,
    ∴∠PBE=∠PEB=α,
    ∴∠BPE=180°﹣∠PBE﹣∠PEB=180°﹣2α=2(90°﹣α),
    ∴∠BPE=2∠OAB.
    (3)
    解:①结论:∠QPO,∠BAQ
    理由:如图3中,∵∠APQ=∠BPE=2∠OAB,
    ∵∠BPE=2∠OAB,
    ∴∠APQ=∠BPE.
    ∴∠APQ﹣∠APB=∠BPE﹣∠APB.
    ∴∠QPO=∠EPA.
    又∵PE=PB,AP=PQ
    ∴∠PEB=∠PBE=∠PAQ=∠AQP.
    ∴∠BAQ=180°﹣∠EAQ=180°﹣∠APQ=∠EPA.
    ∴与∠EPA相等的角有∠QPO,∠BAQ.
    故答案为:∠QPO,∠BAQ.
    ②如图3中,连接BQ交x轴于T.

    ∵AP=PQ,PE=PB,∠APQ=∠BPE,
    ∴∠APE=∠QPB,
    在△APE和△QPB中,,
    ∴△APE≌△QPB(SAS),
    ∴∠AEP=∠QBP,
    ∵∠AEP=∠EBP,
    ∴∠ABO=∠QBP,
    ∵∠ABO+∠BAO=90°,∠OBT+∠OTB=90°,
    ∴∠BAO=∠BTO,
    ∴BA=BT,
    ∵BO⊥AT,
    ∴OA=OT,
    ∴直线BT的解析式为为:,
    ∴点Q在直线y=﹣x+4上运动,
    ∵B(0,4),T(3,0).
    ∴BT=5.
    当OQ⊥BT时,OQ最小.
    ∵S△BOT=×3×4=×5×OQ.
    ∴OQ=.
    ∴线段OQ长的最小值为.
    【点睛】
    本题属于一次函数综合题,考查一次函数图象与坐标轴的交点问题、全等三角形的判定和性质、等腰三角形的性质、锐角三角函数及最短距离等知识,正确寻找全等三角形是解题的关键.

    相关试卷

    数学第二十一章 一次函数综合与测试随堂练习题:

    这是一份数学第二十一章 一次函数综合与测试随堂练习题,共23页。试卷主要包含了若一次函数的图像经过第一等内容,欢迎下载使用。

    冀教版八年级下册第二十一章 一次函数综合与测试当堂达标检测题:

    这是一份冀教版八年级下册第二十一章 一次函数综合与测试当堂达标检测题,共25页。试卷主要包含了已知一次函数y=,当时,直线与直线的交点在等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试练习:

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试练习,共29页。试卷主要包含了下列函数中,属于正比例函数的是,如图所示,直线分别与轴等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map