冀教版八年级下册第二十一章 一次函数综合与测试同步达标检测题
展开
这是一份冀教版八年级下册第二十一章 一次函数综合与测试同步达标检测题,共30页。试卷主要包含了点A,若点等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若实数、满足且,则关于的一次函数的图像可能是( )
A. B. C. D.
2、如图,函数和的图像相交于点P(1,m),则不等式的解集为( )
A. B. C. D.
3、已知点,都在直线上,则与的大小关系为( )
A. B. C. D.无法比较
4、如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是( )
A. B.
C. D.
5、点A(3,)和点B(-2,)都在直线y=-2x+3上,则和的大小关系是( )
A. B. C. D.不能确定
6、如图,在Rt△ABO中,∠OBA=90°,A(4,4),且,点D为OB的中点,点P为边OA上的动点,使四边形PDBC周长最小的点P的坐标为( )
A.(2,2) B.(,) C.(,) D.(,)
7、如图,在平面直角坐标系中,线段AB的端点为A(﹣2,1),B(1,2),若直线y=kx﹣1与线段AB有交点,则k的值不能是( ).
A.-2 B.2
C.4 D.﹣4
8、如图,已知直线与轴交于点,与轴交于点,以点为圆心、长为半径画弧,与轴正半轴交于点,则点的坐标为( )
A. B. C. D.
9、若点(-3,y1)、(2,y2)都在函数y=-4x+b的图像上,则y1与y2的大小关系( )
A.y1>y2 B.y1<y2 C.y1=y2 D.无法确定
10、在平面直角坐标系中,正比例函数y =kx(k<0)的图象的大致位置只可能是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、甲、乙两车分别从,两地同时相向匀速行驶,当乙车到达地后,继续保持原速向远离的方向行驶,而甲车到达地后立即掉头,并保持原速与乙车同向行驶,经过12小时后两车同时到达距地300千米的地(中途休息时间忽略不计).设两车行驶的时间为(小时),两车之间的距离为(千米),与之间的函数关系如图所示,则当甲车到达地时,乙车距地 __千米.
2、若一次函数的图象经过点,且不经过第四象限,则的取值范围为______.
3、根据如图所示的程序计算函数值,若输入x的值为,则输出的y值为_.
4、在平面直角坐标系xOy中,点A点B的坐标分别是(4,8),(12,0),则△AOB的重心G的坐标是 _____.
5、如图,已知函数y=ax+b和y=kx的图象交于点P,则二元一次方程组的解是________;当ax+b≤kx时,x的取值范围是____________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在平面直角坐标系中,直线与直线相交于点.
(1)求m,b的值;
(2)求的面积;
(3)点P是x轴上的一点,过P作垂于x轴的直线与的交点分别为C,D,若P点的横坐标为n,当时直接写出n的取值范围.
2、已知一次函数 y=-x+2.
(1)求这个函数的图像与两条坐标轴的交点坐标;
(2)在平面直角坐标系中画出这个函数的图像;
(3)结合函数图像回答问题:
①当 x>0 时,y 的取值范围是 ;
②当 y<0 时,x 的取值范围是 .
3、如图,已知直线l1:y=kx+2与x轴相交于点A,与y轴相交于点B,且AB=;直线l2经过点(2,2)且平行于直线y=−2x.直线l2与x轴交于点C,与y轴交于点D,与直线l1交于点N.
(1)求k的值;
(2)求四边形OCNB的面积;
(3)若线段CD上有一动点P(不含端点),过P点作x轴的垂线,垂足为M.设点P的横坐标为m.若PM≤3,求m的取值范围.
4、如图,在平面直角坐标系中,点,,,且,,满足关于,的二元一次方程,直线经过点,且直线轴,点为直线上的一个动点,连接,,.
(1)求,,的值;
(2)在点运动的过程中,当三角形的面积等于三角形的面积的时,求的值;
(3)在点运动的过程中,当取得最小值时,直接写出的值.
5、如图1,一次函数y=x+4的图象与x轴、y轴分别交于点A、B.
(1)则点A的坐标为_______,点B的坐标为______;
(2)如图2,点P为y轴上的动点,以点P为圆心,PB长为半径画弧,与BA的延长线交于点E,连接PE,已知PB=PE,求证:∠BPE=2∠OAB;
(3)在(2)的条件下,如图3,连接PA,以PA为腰作等腰三角形PAQ,其中PA=PQ,∠APQ=2∠OAB.连接OQ.
①则图中(不添加其他辅助线)与∠EPA相等的角有______;(都写出来)
②试求线段OQ长的最小值.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据实数、满足可知,、互为相反数,再根据,可确定、的符号,进而确定图象的大致位置.
【详解】
解:∴实数、满足,
∴、互为相反数,
∵,
∴,,
∴
∴一次函数的图像经过二、三、四象限,
故选:B.
【点睛】
本题考查了一次函数图象的性质,解题关键是根据已知条件,确定、的符号.
2、B
【解析】
【分析】
由题意首先确定y=mx和y=kx-b的交点以及作出y=kx-b的大体图象,进而根据图象进行判断即可.
【详解】
解:∵y=kx+b的图象经过点P(1,m),
∴k+b=m,
当x=-1时,kx-b=-k-b=-(k+b)=-m,
即(-1,-m)在函数y=kx-b的图象上.
又∵(-1,-m)在y=mx的图象上.
∴y=kx-b与y=mx相交于点(-1,-m).
则函数图象如图.
则不等式-b≤kx-b≤mx的解集为-1≤x≤0.
故选:B.
【点睛】
本题考查一次函数与不等式的关系,运用数形结合思维分析并正确确定y=kx-b和y=mx的交点是解题的关键.
3、A
【解析】
【分析】
根据一次函数的增减性分析,即可得到答案.
【详解】
∵直线上,y随着x的增大而减小
又∵
∴
故选:A.
【点睛】
本题考查了一次函数的增减性;解题的关键是熟练掌握一次函数图像的性质,从而完成求解.
4、A
【解析】
【分析】
分三段来考虑点P沿A→D运动,的面积逐渐变大;点P沿D→C移动,的面积不变;点P沿C→B的路径移动,的面积逐渐减小,同时考虑各段的函数解析式,据此选择即可得.
【详解】
解:如图,过点B作BH⊥DA交DA的延长线于H,设BH=h,则当点P在线段AD上时,,h是定值,y是x的一次函数,
点P沿A→D运动,的面积逐渐变大,且y是x的一次函数,
点P沿D→C移动,的面积不变,
点P沿C→B的路径移动,的面积逐渐减小,同法可知y是x的一次函数,
故选:A.
【点睛】
本题以动点问题为背景,考查了分类讨论的数学思想以及函数图象的变化规律,理解题意,作出辅助线是解题关键.
5、C
【解析】
【分析】
利用一次函数的增减性性质判定即可.
【详解】
∵直线y=-2x+3的k=-2<0,
∴y随x的增大而减小,
∵-2<3,
∴,
故选C.
【点睛】
本题考查了一次函数的增减性,熟练掌握性质是解题的关键.
6、C
【解析】
【分析】
先确定点D关于直线AO的对称点E(0,2),确定直线CE的解析式,直线AO的解析式,两个解析式的交点就是所求.
【详解】
∵∠OBA=90°,A(4,4),且,点D为OB的中点,
∴点D(2,0),AC=1,BC=3,点C(4,3),
设直线AO的解析式为y=kx,
∴4=4k,
解得k=1,
∴直线AO的解析式为y=x,
过点D作DE⊥AO,交y轴于点E,交AO于点F,
∵∠OBA=90°,A(4,4),
∴∠AOE=∠AOB=45°,
∴∠OED=∠ODE=45°,OE=OD,
∴DF=FE,
∴点E是点D关于直线AO的对称点,
∴点E(0,2),
连接CE,交AO于点P,此时,点P是四边形PCBD周长最小的位置,
设CE的解析式为y=mx+n,
∴,
解得,
∴直线CE的解析式为y=x+2,
∴y=14x+2y=x,
解得,
∴使四边形PDBC周长最小的点P的坐标为(,),
故选C.
【点睛】
本题考查了一次函数的解析式,将军饮马河原理,熟练掌握待定系数法和将军饮马河原理是解题的关键.
7、B
【解析】
【分析】
当直线y=kx−1过点A时,求出k的值,当直线y=kx−1过点B时,求出k的值,介于二者之间的值即为使直线y=kx−1与线段AB有交点的x的值.
【详解】
解:①当直线y=kx−1过点A时,将A(−2,1)代入解析式y=kx−1得,k=−1,
②当直线y=kx−1过点B时,将B(1,2)代入解析式y=kx−1得,k=3,
∵|k|越大,它的图象离y轴越近,
∴当k≥3或k≤-1时,直线y=kx−1与线段AB有交点.
故选:B.
【点睛】
本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线.
8、C
【解析】
【分析】
求出点A、点坐标,求出长即可求出点的坐标.
【详解】
解:当x=0时,,点B的坐标为(0,-1);当y=0时,,解得,,点A的坐标为(2,0);
即,,;
以点为圆心、长为半径画弧,与轴正半轴交于点,
故,则,
点C的坐标为;
故选:C
【点睛】
本题考查了一次函数与坐标轴交点坐标和勾股定理,解题关键是求出一次函数与坐标轴交点坐标,利用勾股定理求出线段长.
9、A
【解析】
【分析】
根据一次函数的性质得出y随x的增大而减小,进而求解.
【详解】
由一次函数y=-4x+b可知,k=-4<0,y随x的增大而减小,
∵-3<2,
∴y1>y2,
故选:A.
【点睛】
本题考查一次函数的性质,熟知一次函数y=kx+b(k≠0),当k<0时,y随x的增大而减小是解题的关键.
10、A
【解析】
略
二、填空题
1、100
【解析】
【分析】
由图象可知甲车从A地到地用了4小时,从地到地用小时,乙从地到地用了12小时,进而求得甲车的速度,A、两地的距离,乙车的速度,然后根据甲车到达地的时间求解乙车距A地的距离即可.
【详解】
解:由图象可知,甲车从A地到地用了4小时,从地到地用小时,乙从地到地用了12小时
∴甲车的速度是(千米时)
∴、两地之间的距离是千米
∴乙车的速度是(千米时)
∵甲车到达地时,用时4小时
∴此时乙车距A地(千米)
故答案为:100.
【点睛】
本题以行程问题为背景的函数图象的应用.解题的关键是根据函数图象理解题意,求得两车的速度.
2、
【解析】
【分析】
把点代入得,根据一次函数不经过第四象限求得取值范围即可求得结论.
【详解】
解:∵一次函数的图象经过点,
∴
∴
∵一次函数不经过第四象限
∴,即
解得,
又
∴
即
故答案为:
【点睛】
本题主要考查了一次函数的图象与性质,求出是解答本题的关键.
3、##
【解析】
【分析】
根据x的值选择相应的函数关系式求解函数值即可解答.
【详解】
解:∵x=,
∴1<x<2,
∴y=-x+2=-+2=,
即输出的y值为,
故答案为:.
【点睛】
本题考查求一次函数的函数值,明确每段函数的自变量取值范围是解答的关键.
4、##
【解析】
【分析】
分别求得的中点的坐标,进而求得直线的交点坐标即可求得重心G的坐标.三角形的重心为三角形三条中线的交点.
【详解】
解:如图,点A点B的坐标分别是(4,8),(12,0),
,
设直线的解析式为,
解得
直线的解析式为
设直线的解析式为,
解得
直线的解析式为,
则即为的重心
即
解得
故答案为:
【点睛】
本题考查了三角形重心的定义,待定系数法求一次函数解析式,中点坐标公式,求两直线解析式,掌握三角形的重心的定义是解题的关键.
5、 x ≥-4
【解析】
【分析】
根据图像可知,函数和交于点P(-4,-2),即可得二元一次方程组的解;根据函数图像可知,当时,.
【详解】
解:根据图像可知,函数和交于点P(-4,-2),
则二元一次方程组的解是,
由图像可知,当时,,
故答案为:;.
【点睛】
本题考查了一次函数与二元一次方程组,解题的关键是掌握一次函数的性质.
三、解答题
1、 (1)m=2,b=3
(2)12
(3)或
【解析】
【分析】
(1)先根据直线l2求出m的值,再将点B(m,4)代入直线l1即可得b的值.
(2)求出点A坐标,结合点B坐标,利用三角形面积公式计算即可;
(3)求出点C和点D的纵坐标,再分C、D在点B左侧和右侧两种情况分别求解.
(1)
解:∵点B(m,4)直线l2:y=2x上,
∴4=2m,
∴m=2,
∴点B(2,4),
将点B(2,4)代入直线得:,
解得b=3;
(2)
将y=0代入,得:x=-6,
∴A(-6,0),
∴OA=6,
∴△AOB的面积==12;
(3)
令x=n,则,,
当C、D在点B左侧时,
则,
解得:;
当C、D在点B右侧时,
则,
解得:;
综上:n的取值范围为或.
【点睛】
本题是一次函数综合题,考查两条直线平行、相交问题,三角形的面积,解题的关键是灵活应用待定系数法,学会利用图象,根据条件确定自变量取值范围.
2、 (1)这个函数的图像与坐标轴的交点为(0,2),(2,0);
(2)见解析
(3)①y<2;②x>2
【解析】
【分析】
(1)令x=0,求函数与y轴的交点,令y=0,求函数与x轴的交点;
(2)两点法画出函数图象;
(3)通过观察函数图象求解即可.
(1)
解:令x=0,则y=2,
令y=0,则x=2,
∴这个函数的图像与坐标轴的交点为(0,2),(2,0);
(2)
解:这个函数的图像如图所示:
,
(3)
解:①观察图像可知:当x>0时,y<2,
故答案为:y<2;
②观察图像可知:当y<0时,x>2,
故答案为:x>2.
【点睛】
本题考查了一次函数的图象及性质,熟练掌握一次函数的图象及性质,数形结合解题是关键.
3、 (1)k=2;
(2)7;
(3)≤m≤3
【解析】
【分析】
(1)利用勾股定理求得B (-1,0),再利用待定系数法即可求解;
(2)先求得直线l2的解析式,分别求得D、C、N的坐标,再利用四边形OCNB的面积=S△ODC- S△NBD求解即可;
(3)先求得点P的纵坐标,根据题意列不等式组求解即可.
(1)
解:令x=0,则y=2;
∴B (0,2),
∴OB=2,
∵AB=;
∴OA=1,
∴A (-1,0),
把B (-1,0)代入y=kx+2得:0=-k+2,
∴k=2;
(2)
解:∵直线l2平行于直线y=−2x.
∴设直线l2的解析式为y=−2x+b.
把(2,2)代入得2=−22+b,
解得:b=6,
∴直线l2的解析式为.
令x=0,则y=6,则D (0,6);令y=0,则x=3,则C (3,0),
由(1)得直线l1的解析式为.
解方程组得:,
∴N (1,4),
四边形OCNB的面积=S△ODC- S△NBD
=
=7;
(3)
解:∵点P的横坐标为m,
∴点P的纵坐标为,
∴PM=,
∵PM≤3,且点P在线段CD上,
∴≤3,且m≤3.
解得:≤m≤3.
【点睛】
本题考查了两条直线相交与平行问题,待定系数法求函数的解析式,三角形的面积,正确的理解题意是解题的关键.
4、 (1),,
(2)或
(3)
【解析】
【分析】
(1)根据二次根式有意义的条件求出c,根据二元一次方程的定义列出方程组,解方程组求出a、b;
(2)根据三角形的面积公式求出△AOB的面积,根据S△ABD=×S△AOB求出S△ABD,根据三角形的面积公式计算,得到答案;
(3)利用待定系数法求出直线AB的解析式,进而求出m.
(1)
由和可知,,,
,
由二元一次方程的定义,得,
解得:,
,,;
(2)
设与直线交于,连接,
由(1)可知:,,,
,
,
,
,即,
解得:,
,
,
解得:或;
(3)
当取得最小值时,点在上,
设直线的解析式为:,
则,
解得:,
直线的解析式为:,
当时,,
的值为.
【点睛】
本题考查的是二次根式有意义的条件、二元一次方程的定义、三角形的面积计算、函数解析式的确定,掌握待定系数法求一次函数解析式的一般步骤是解题的关键.
5、 (1)(-3,0);(0,4)
(2)证明见解析
(3)①∠QPO,∠BAQ;②线段OQ长的最小值为
【解析】
【分析】
(1)根据题意令x=0,y=0求一次函数与坐标轴的交点;
(2)由题意可知与∠EPA相等的角有∠QPO,∠BAQ.利用三角形内角和定理解决问题;
(3)根据题意可知如图3中,连接BQ交x轴于T.证明△APE≌△QPB(SAS),推出∠AEP=∠QBP,再证明OA=OT,推出直线BT的解析式为为:,推出点Q在直线y=﹣x+4上运动,再根据垂线段最短,即可解决问题.
(1)
解:在y=x+4中,令y=0,得0=x+4,
解得x=﹣3,
∴A(﹣3,0),
在y=x+4中,令x=0,得y=4,
∴B(0,4);
故答案为:(﹣3,0),(0,4).
(2)
证明:如图2中,设∠ABO=α,则∠OAB=90°﹣α,
∵PB=PE,
∴∠PBE=∠PEB=α,
∴∠BPE=180°﹣∠PBE﹣∠PEB=180°﹣2α=2(90°﹣α),
∴∠BPE=2∠OAB.
(3)
解:①结论:∠QPO,∠BAQ
理由:如图3中,∵∠APQ=∠BPE=2∠OAB,
∵∠BPE=2∠OAB,
∴∠APQ=∠BPE.
∴∠APQ﹣∠APB=∠BPE﹣∠APB.
∴∠QPO=∠EPA.
又∵PE=PB,AP=PQ
∴∠PEB=∠PBE=∠PAQ=∠AQP.
∴∠BAQ=180°﹣∠EAQ=180°﹣∠APQ=∠EPA.
∴与∠EPA相等的角有∠QPO,∠BAQ.
故答案为:∠QPO,∠BAQ.
②如图3中,连接BQ交x轴于T.
∵AP=PQ,PE=PB,∠APQ=∠BPE,
∴∠APE=∠QPB,
在△APE和△QPB中,,
∴△APE≌△QPB(SAS),
∴∠AEP=∠QBP,
∵∠AEP=∠EBP,
∴∠ABO=∠QBP,
∵∠ABO+∠BAO=90°,∠OBT+∠OTB=90°,
∴∠BAO=∠BTO,
∴BA=BT,
∵BO⊥AT,
∴OA=OT,
∴直线BT的解析式为为:,
∴点Q在直线y=﹣x+4上运动,
∵B(0,4),T(3,0).
∴BT=5.
当OQ⊥BT时,OQ最小.
∵S△BOT=×3×4=×5×OQ.
∴OQ=.
∴线段OQ长的最小值为.
【点睛】
本题属于一次函数综合题,考查一次函数图象与坐标轴的交点问题、全等三角形的判定和性质、等腰三角形的性质、锐角三角函数及最短距离等知识,正确寻找全等三角形是解题的关键.
相关试卷
这是一份数学第二十一章 一次函数综合与测试随堂练习题,共23页。试卷主要包含了若一次函数的图像经过第一等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十一章 一次函数综合与测试当堂达标检测题,共25页。试卷主要包含了已知一次函数y=,当时,直线与直线的交点在等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试练习,共29页。试卷主要包含了下列函数中,属于正比例函数的是,如图所示,直线分别与轴等内容,欢迎下载使用。