![精品试卷冀教版八年级数学下册第二十一章一次函数专题练习试题(含详细解析)第1页](http://www.enxinlong.com/img-preview/2/3/12764837/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷冀教版八年级数学下册第二十一章一次函数专题练习试题(含详细解析)第2页](http://www.enxinlong.com/img-preview/2/3/12764837/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷冀教版八年级数学下册第二十一章一次函数专题练习试题(含详细解析)第3页](http://www.enxinlong.com/img-preview/2/3/12764837/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学八年级下册第二十一章 一次函数综合与测试测试题
展开
这是一份数学八年级下册第二十一章 一次函数综合与测试测试题,共26页。试卷主要包含了已知,直线不经过点等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知点,在一次函数的图像上,则m与n的大小关系是( )A. B. C. D.无法确定2、下列各点在函数y=﹣3x+2图象上的是( )A.(0,﹣2) B.(1,﹣1) C.(﹣1,﹣1) D.(﹣,1)3、若一次函数的图像经过第一、三、四象限,则的值可能为( )A.-2 B.-1 C.0 D.24、甲、乙两地之间是一条直路,在全民健身活动中,王明跑步从甲地往乙地,陈启浩骑自行车从乙地往甲地,两人同时出发,陈启浩先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法中错误的是( )A.两人出发1小时后相遇B.王明跑步的速度为8km/hC.陈启浩到达目的地时两人相距10kmD.陈启浩比王明提前1.5h到目的地5、对于正比例函数y=kx,当x增大时,y随x的增大而增大,则k的取值范围( )A.k<0 B.k≤0 C.k>0 D.k≥06、、两地相距,甲骑摩托车从地匀速驶向地.当甲行驶小时途径地时,一辆货车刚好从地出发匀速驶向地,当货车到达地后立即掉头以原速匀速驶向地.如图表示两车与地的距离和甲出发的时间的函数关系.则下列说法错误的是( )A.甲行驶的速度为 B.货车返回途中与甲相遇后又经过甲到地C.甲行驶小时时货车到达地 D.甲行驶到地需要7、已知、两点,在轴上存在点使得的值最小,则点的坐标为( )A. B. C. D.8、直线不经过点( )A.(0,0) B.(﹣2,3) C.(3,﹣2) D.(﹣3,2)9、关于函数y=-2x+1,下列结论正确的是( )A.图像经过点 B.y随x的增大而增大C.图像不经过第四象限 D.图像与直线y=-2x平行10、如图,已知点K为直线l:y=2x+4上一点,先将点K向下平移2个单位,再向左平移a个单位至点K1,然后再将点K1向上平移b个单位,向右平1个单位至点K2,若点K2也恰好落在直线l上,则a,b应满足的关系是( )A.a+2b=4 B.2a﹣b=4 C.2a+b=4 D.a+b=4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图1是甲、乙两个圆柱形容器的轴截面示意图,乙容器中有一个圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙容器底面上),现将甲容器中的水匀速注入乙容器,甲、乙两个容器中水的深度与注水时间(分钟)之间的关系如图2所示,若乙容器中铁块的体积是,则甲容器的底面积是______.2、已知函数是关于x的一次函数,则______.3、一次函数 y=2x+3 的图象经过第____________象限,y随x的增大而______ ,与y轴交点坐标为_________.4、已知一次函数的图象过点(3,5)与(-4,-9),求一次函数的解析式.分析:求一次函数y=kx+b的解析式,关键是求出k,b的值.从已知条件可以列出关于k,b的二元一次方程组,并求出k,b.解:设这个一次函数的解析为:y=kx+b因为y=kx+b的图象过点(3,5)与(-4,-9),所以,解方程组得:,这个一次函数的解析式为:___5、如图,将正方形置于平面直角坐标系中,其中,,边在轴上,直线与正方形的边有两个交点、,当时,的取值范围是__.三、解答题(5小题,每小题10分,共计50分)1、已知一次函数 y=-x+2.(1)求这个函数的图像与两条坐标轴的交点坐标;(2)在平面直角坐标系中画出这个函数的图像;(3)结合函数图像回答问题:①当 x>0 时,y 的取值范围是 ;②当 y<0 时,x 的取值范围是 .2、直线,与直线相交于点.(1)求直线的解析式;(2)横、纵坐标都是整数的点叫做整点.记直线与直线和轴围成的区域内(不含边界)为.①当时,直接写出区域内的整点个数;②若区域内的整点恰好为2个,结合函数图象,求的取值范围.3、如图,平面直角坐标系xOy中,点A、B的坐标分别为A(a,0),B(0,b),其中a,b满足+b2﹣8b+16=0,点P在y轴上,且在B点上方,PB=m(m>0),以AP为边作等腰直角△APM,∠APM=90°,PM=PA,点M落在第一象限.(1)a= ;b= ;(2)求点M的坐标(用含m代数式表示);(3)若射线MB与x轴交于点Q,判断点Q的坐标是否随m的变化而变化,若不变,求出Q点的坐标;若变化,请说明理由.4、某校计划为在校运会上表现突出的12名志愿者每人颁发一件纪念品,李老师前往购买钢笔和笔记本作为纪念品,如果买10支钢笔和2本笔记本,需230元;如果买8支钢笔和4本笔记本,需220元.(1)求钢笔和笔记本的单价;(2)售货员提示:当购买的钢笔超过6支时,所有的钢笔打9折.设购买纪念品的总费用为w元,其中钢笔的支数为a.①当时,求w与a之间的函数关系式;②李老师购买纪念品一共花了210元钱,他可能购买了多少支钢笔?5、已知一次函数的图象经过点和.(1)求此一次函数的表达式;(2)点是否在直线AB上,请说明理由. -参考答案-一、单选题1、A【解析】【分析】根据一次函数的性质,y随x增大而减小判断即可.【详解】解:知点,在一次函数的图像上,∵-2<0,∴y随x增大而减小,∵,∴,故选:A.【点睛】本题考查了一次函数的增减性,解题关键是明确一次函数y随x增大而减小的性质.2、B【解析】【分析】根据一次函数图象上点的坐标满足函数解析式,逐一判断,即可得到答案.【详解】∵,∴A不符合题意,∵,∴B符合题意,∵,∴C不符合题意,∵,∴D不符合题意,故选B.【点睛】本题主要考查一次函数图象上点的坐标,掌握一次函数图象上点的坐标满足函数解析式,是解题的关键.3、D【解析】【分析】利用一次函数图象与系数的关系可得出m-1>0,解之即可得出m的取值范围,再对照四个选项即可得出结论.【详解】解:∵一次函数y=(m-1)x-1的图象经过第一、三、四象限,∴m-1>0,∴m>1,∴m的值可能为2.故选:D.【点睛】本题考查了一次函数图象与系数的关系、解一元一次不等式,牢记“k>0,b<0⇔y=kx+b的图象经过一、三、四象限”是解题的关键.4、C【解析】【分析】根据函数图象中的数据,可以分别计算出两人的速度,从而可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:由图象可知,两人出发1小时后相遇,故选项A正确;王明跑步的速度为24÷3=8(km/h),故选项B正确;陈启浩的速度为:24÷1-8=16(km/h),陈启浩从开始到到达目的地用的时间为:24÷16=1.5(h),故陈启浩到达目的地时两人相距8×1.5=12(km),故选项C错误;陈启浩比王提前3-1.5=1.5h到目的地,故选项D正确;故选:C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.5、C【解析】略6、C【解析】【分析】根据函数图象结合题意,可知两地的距离为,此时甲行驶了1小时,进而求得甲的速度,即可判断A、D选项,根据总路程除以速度即可求得甲行驶到地所需要的时间,根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,据此判断B选项,求得相遇时,甲距离地的距离,进而根据货车行驶的路程除以时间即可求得货车的速度,进而求得货车到达地所需要的时间.【详解】解:两地的距离为,故A选项正确,不符合题意;故D选项正确,不符合题意;根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,则即货车返回途中与甲相遇后又经过甲到地故B选项正确,相遇时为第4小时,此时甲行驶了,货车行驶了则货车的速度为则货车到达地所需的时间为即第小时故甲行驶小时时货车到达地故C选项不正确故选C【点睛】本题考查了一次函数的应用,弄清楚函数图象中各拐点的意义是解题的关键.7、B【解析】【分析】解:作点A关于y轴的对称点C,得C(-1,-1),直线AC与y轴交点即为点P,此时的值最小,求出直线BC的函数解析式,令x=0时得y的值即为点P的坐标.【详解】解:作点A关于y轴的对称点C,得C(-1,-1),直线AC与y轴交点即为点P,此时的值最小,设直线BC的函数解析式为y=kx+b,将、C(-1,-1)代入,得,解得,∴直线BC的函数解析式为y=x+, 当x=0时,得y=,∴P(0,).故选:B.【点睛】此题考查了轴对称求最短路径,求一次函数解析式,一次函数图象与坐标轴交点坐标,正确掌握利用轴对称知识解决最短路径问题是解题的关键.8、B【解析】【分析】将各点代入函数解析式即可得.【详解】解:A、当时,,即经过点,此项不符题意;B、当时,,即不经过点,此项符合题意;C、当时,,即经过点,此项不符题意;D、当时,,即经过点,此项不符题意;故选:B.【点睛】本题考查了正比例函数,熟练掌握正比例函数的图象与性质是解题关键.9、D【解析】【分析】根据一次函数的性质对各选项进行逐一判断即可.【详解】解:A、当x=−2,y=−2x+1=−2×(−2)+1=5,则点(−2,1)不在函数y=−2x+1图象上,故本选项错误;B、由于k=−2<0,则y随x增大而减小,故本选项错误;C、由于k=−2<0,则函数y=−2x+1的图象必过第二、四象限,b=1>0,图象与y轴的交点在x的上方,则图象还过第一象限,故本选项错误;D、由于直线y=−2x+1与直线y=−2x的倾斜角相等且与y轴交于不同的点,所以它们相互平行,故本选项正确;故选:D.【点睛】本题考查了一次函数y=kx+b(k≠0)的性质:当k>0,图象经过第一、三象限,y随x增大而增大;当k<0,图象经过第二、四象限,y随x增大而减小;当b>0,图象与y轴的交点在x的上方;当b=0,图象经过原点;当b<0,图象与y轴的交点在x的下方.10、C【解析】【分析】点K为直线l:y=2x+4上一点,设再根据平移依次写出的坐标,再把的坐标代入一次函数的解析式,整理即可得到答案.【详解】解: 点K为直线l:y=2x+4上一点,设 将点K向下平移2个单位,再向左平移a个单位至点K1, 将点K1向上平移b个单位,向右平1个单位至点K2, 点K2也恰好落在直线l上, 整理得: 故选C【点睛】本题考查的是一次函数图象上点的坐标满足函数解析式,点的平移,掌握“点的平移坐标的变化规律”是解本题的关键.二、填空题1、80【解析】【分析】设甲容器的底面积为,乙容器的底面积为,根据拐点(3,17),得到铁块的高度为17cm,从而得到铁块的底面积为=12(),确定= -3x+15,当x=3时,=6,从而得到6=(25-17),从而得到9=(17-2)(-12),求解即可.【详解】设甲容器的底面积为,乙容器的底面积为,∵拐点(3,17),∴铁块的高度为17cm,∴铁块的底面积为=12(),设=kx+15,把(5,0)代入,得5k+15=0,解得k=-3,∴= -3x+15,当x=3时,=6,∴6=(25-17),即=,∵9=(17-2)(-12),∴=80(),故答案为:80.【点睛】本题考查了一次函数的解析式,圆柱的体积,熟练掌握一次函数解析式的确定,正确读懂函数信息是解题的关键.2、4【解析】【分析】由一次函数的定义可知x的次数为1,即,x的系数不为0,即,然后对计算求解即可.【详解】解:由题意知解得(舍去),故答案为:4.【点睛】本题考查了一次函数,绝对值方程,解不等式.解题的关键根据一次函数的定义求解参数.3、 一,二,三 增大 (0,3)【解析】略4、y=2x-1【解析】略5、或且【解析】【分析】设BC与y轴交于点M,根据题意可得E点不在AD边上,即,分两种情况进行讨论:①如果,那么点E在AB边或线段BM上;②如果,那么点E在CD边或线段CM上;对两种情况的临界情况进行分析即可得出结果.【详解】解:如图,设BC与y轴交于点M,,,,∴E点不在AD边上,;①如果,那么点E在AB边或线段BM上,当点E在AB边且时,由勾股定理得,,,,,当直线经过点,时,.,,当点E在线段BM上时,,,符合题意;②如果,那么点E在CD边或线段CM上,当点E在CD边且时,E与D重合;当时,由勾股定理得,,,,此时E与C重合,当直线经过点时,.当点E在线段CM上时,,且,符合题意;综上,当时,的取值范围是或且,故答案为:或且.【点睛】题目主要考查正比例函数的综合问题,包括其性质及分类讨论思想,勾股定理解三角形等,理解题意,熟练掌握运用分类思想是解题关键.三、解答题1、 (1)这个函数的图像与坐标轴的交点为(0,2),(2,0);(2)见解析(3)①y<2;②x>2【解析】【分析】(1)令x=0,求函数与y轴的交点,令y=0,求函数与x轴的交点;(2)两点法画出函数图象;(3)通过观察函数图象求解即可.(1)解:令x=0,则y=2, 令y=0,则x=2,∴这个函数的图像与坐标轴的交点为(0,2),(2,0);(2)解:这个函数的图像如图所示:,(3)解:①观察图像可知:当x>0时,y<2,故答案为:y<2;②观察图像可知:当y<0时,x>2,故答案为:x>2.【点睛】本题考查了一次函数的图象及性质,熟练掌握一次函数的图象及性质,数形结合解题是关键.2、 (1)直线为;(2)①当时,整点个数为1个,为;②的取值范围为或【解析】【分析】(1)根据待定系数法求得即可;(2)①当k=1时代入点A坐标即可求出直线解析式,进而分析出整点个数;②当k<0时分别以(1,2),(2,1);(1,2),(3,1)为边界点代入确定k的值;当k>0时分别以(1,2),(−1,1);(1,2),(−2,1)为边界点代入确定k的值,根据图形即可求得k的取值范围.(1)解:直线过点.,直线为.(2)解:①当时,,把代入得,解得:,,如图1,区域内的整点个数为1个,为.②如图2,若,当直线过,时,.当直线过,时,.,如图3,若,当直线过,时,.当直线过,时,..综上,若区域内的整点恰好为2个,的取值范围为或.【点睛】此题主要考查待定系数法求一次函数的解析式,会运用边界点分析问题是解题的关键.3、 (1)4;4(2)(m+4,m+8)(3)不变,(﹣4,0)【解析】【分析】(1)将进行变形,然后根据二次根式有意义的条件及平方的非负性质即可进行求解;(2)过点M作轴于点N,利用同角的余角相等可得,根据全等三角形的判定和性质可得,,,结合图象即可得出结果;(3)设直线MB的解析式为,由(2)结论将点M的坐标代入整理可得,根据题意可得:,将其代入可确定函数解析式,即可确定点Q的坐标.(1),则,∵,,∴,,解得:,,故答案为:4;4;(2)过点M作轴于点N,∵,∴,∵,∴,在和中,,∴,∴,,∴,∴点M的坐标为;(3)点Q的坐标不变,理由如下:设直线MB的解析式为,则,整理得,,∵,∴,解得:,∴直线MB的解析式为,∴无论m的值如何变化,点Q的坐标都不变,为.【点睛】题目主要考查二次根式有意义的条件及平方的非负性质,全等三角形的判定和性质,利用待定系数法确定一次函数解析式等,理解题意,综合运用这些知识点是解题关键.4、 (1)钢笔的单价为元,笔记本的单价为元.(2)①;②6支或10支【解析】【分析】(1)设钢笔的单价为元,笔记本的单价为元,再根据买10支钢笔和2本笔记本,需230元;买8支钢笔和4本笔记本,需220元,列方程组,再解方程组即可;(2)①当时,由总费用等于购买钢笔与笔记本的费用之和可列函数关系式,②分两种情况列方程,当或 再解方程可得答案.(1)解:设钢笔的单价为元,笔记本的单价为元,则 解得: 答:钢笔的单价为元,笔记本的单价为元.(2)解:①当时,w与a之间的函数关系式为: 所以w与a之间的函数关系式为 ②当时,则 解得: 当时, 解得: 所以李老师购买纪念品一共花了210元钱,他可能购买了6支或支钢笔.【点睛】本题考查的是二元一次方程组的应用,一次函数的应用,掌握“确定相等关系列二元一次方程组与一次函数的关系式”是解本题的关键.5、 (1)一次函数的表达式为;(2)点在直线AB上,见解析【解析】【分析】(1)把(-1,-1)、(1,3)分别代入y=kx+b得到关于k、b的方程组,然后解方程求出k与b的值,从而得到一次函数解析式;(2)先计算出自变量为−3时的函数值,然后根据一次函数图象上点的坐标特征进行判断.(1)解:将和代入,得,解得,,∴一次函数的表达式为(2)解:点C在直线AB上,理由:当时,,∴点在直线AB上.【点睛】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b,将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数图象上点的坐标特征.
相关试卷
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步测试题,共27页。
这是一份数学八年级下册第二十一章 一次函数综合与测试一课一练,共26页。试卷主要包含了下列函数中,属于正比例函数的是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课时训练,共25页。试卷主要包含了一次函数的图象一定经过,巴中某快递公司每天上午7,下列函数中,属于正比例函数的是,直线不经过点等内容,欢迎下载使用。