冀教版八年级下册第二十一章 一次函数综合与测试当堂达标检测题
展开
这是一份冀教版八年级下册第二十一章 一次函数综合与测试当堂达标检测题,共26页。试卷主要包含了一次函数的图象不经过的象限是等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、点A(﹣1,y1)和点B(﹣4,y2)都在直线y=﹣2x上,则y1与y2的大小关系为( )A.y1>y2 B.y1<y2 C.y1=y2 D.y1≥y22、对于正比例函数y=kx,当x增大时,y随x的增大而增大,则k的取值范围( )A.k<0 B.k≤0 C.k>0 D.k≥03、甲、乙两个工程队分别同时开挖两段河集,所挖河架的长度(m)与挖掘时同(h)之间的关系如图所示,根据图像所提供的信息,下列说法正确的是( )A.甲队的挖掘速度大于乙队的挖掘速度B.开挖2h时,甲、乙两队所挖的河渠的长度相差8mC.乙队在的时段,与之间的关系式为D.开挖4h时,甲、乙两队所挖的河渠的长度相等4、如图,李爷爷要围一个长方形菜园ABCD,菜园的一边利用足够长的墙,用篱笆围成的另外三边的总长恰好为24m,设边BC的长为xm,边AB的长为ym(x>y).则y与x之间的函数表达式为( )A.y=﹣2x+24(0<x<12) B.y=﹣x+12(8<x<24)C.y=2x﹣24(0<x<12) D.y=x﹣12(8<x<24)5、一次函数的图象不经过的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限6、如图,在平面直角坐标系中,线段AB的端点为A(﹣2,1),B(1,2),若直线y=kx﹣1与线段AB有交点,则k的值不能是( ).A.-2 B.2C.4 D.﹣47、已知点,都在直线上,则与的大小关系为( )A. B. C. D.无法比较8、甲、乙两车从城出发前往城,在整个行驶过程中,汽车离开城的距离与行驶时间的函数图象如图所示,下列说法正确的有( )①甲车的速度为;②乙车用了到达城;③甲车出发时,乙车追上甲车A.0个 B.1个 C.2个 D.3个9、、两地相距,甲骑摩托车从地匀速驶向地.当甲行驶小时途径地时,一辆货车刚好从地出发匀速驶向地,当货车到达地后立即掉头以原速匀速驶向地.如图表示两车与地的距离和甲出发的时间的函数关系.则下列说法错误的是( )A.甲行驶的速度为 B.货车返回途中与甲相遇后又经过甲到地C.甲行驶小时时货车到达地 D.甲行驶到地需要10、小豪骑自行车去位于家正东方向的书店买资料用于自主复习.小豪离家5min后自行车出现故障,小豪立即打电话给爸爸,让爸爸带上工具箱从家里来帮忙维修(小豪和爸爸通话以及爸爸找工具箱的时间忽略不计),同时小豪以原来速度的一半推着自行车继续向书店走去,爸爸接到电话后,立刻出发追赶小豪,追上小豪后,爸爸用2min的时间修好了自行车,并立刻以原速到位于家正西方500m的公司上班,小豪则以原来的骑车速度继续向书店前进,爸爸到达公司时,小豪还没有到达书店.如图是小豪与爸爸的距离y(m)与小豪的出发时间x(min)之向的函数图象,请根据图象判断下列哪一个选项是正确的( ) A.小豪爸爸出发后12min追上小豪 B.小李爸爸的速度为300m/minC.小豪骑自行车的速度为250m/min D.爸爸到达公司时,小豪距离书店500m第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果点A(﹣1,3)、B(5,n)在同一个正比例函数的图像上,那么n=___.2、观察图象可知:当k>0时,直线y=kx+b从左向右______;当k<0时,直线y=kx+b从左向右______.由此可知,一次函数y=kx+b(k,b是常数,k≠0) 具有如下性质:当k>0时,y随x的增大而______;当k<0时,y随x的增大而______.3、如图,一次函数的图像与轴交于点,与正比例函数的图像交于点,点的横坐标为1.5,则满足的的范围是______.4、一次函数y=(k﹣1)x+3中,函数值y随x的增大而减小,则k的取值范围是_____.5、正比例函数图像经过点(1,-1),那么k=__________.三、解答题(5小题,每小题10分,共计50分)1、已知一次函数y=kx﹣4,当x=3时,y=﹣1,求它的解析式以及该直线与坐标轴的交点坐标.2、已知直线与x轴交于点,与y轴相交于点,直线与y轴交于点C,与x轴交于点D,连接BD.(1)求直线的解析式;(2)直线上是否存在一点E,使得,若存在求出点E的坐标,若不存在,请说明理由.3、请用已学过的方法研究一类新函数y=k|x﹣b|(k,b为常数,且k≠0)的图象和性质:(1)完成表格,并在给出的平面直角坐标系中画出函数y=|x﹣2|的图象;x﹣2﹣10123456y4 21012 4 (2)点(m,y1),(m+2,y2)在函数y=|x﹣2|的图象上.①若y1=y2,则m的值为 ;②若y1<y2,则m的取值范围是 ;(3)结合函数图像,写出该函数的一条性质.4、如图,已知直线l1:y=kx+2与x轴相交于点A,与y轴相交于点B,且AB=;直线l2经过点(2,2)且平行于直线y=−2x.直线l2与x轴交于点C,与y轴交于点D,与直线l1交于点N.(1)求k的值;(2)求四边形OCNB的面积;(3)若线段CD上有一动点P(不含端点),过P点作x轴的垂线,垂足为M.设点P的横坐标为m.若PM≤3,求m的取值范围.5、如图,在平面直角坐标系中,三个顶点的坐标分别为,,,将进行平移,使点移动到点,得到△,其中点、、分别为点、、的对应点(1)请在所给坐标系中画出△,并直接写出点的坐标;(2)求的面积;(3)直线过点且平行于轴,在直线上求一点使与的面积相等,请写出点的坐标. -参考答案-一、单选题1、B【解析】【分析】由直线y=-2x的解析式判断k=−2<0,y随x的增大而减小,再结合点的坐标特征解题即可.【详解】解:∵一次函数中一次项系数k=-2<0,∴y随x的增大而减小,∵-4<-1,∴y1<y2.故选B.【点睛】本题考查一次函数的增减性,是重要考点,难度较易,掌握相关知识是解题关键.2、C【解析】略3、D【解析】【分析】根据图象依次分析判断.【详解】解:甲队的挖掘速度在2小时前小于乙队的挖掘速度,2小时后大于乙队的速度,故选项A不符合题意;开挖2h时,乙队所挖的河渠的长度为30m,甲队每小时挖=10m,故2h时,甲队所挖的河渠的长度为20m,开挖2h时,甲、乙两队所挖的河渠的长度相差30-20=10m,故选项B不符合题意;由图象可知,乙队2小时前后的挖掘速度发生了改变,故选项C不符合题意;甲队开挖4h时,所挖河渠的长度为,乙队开挖2小时后的函数解析式为,当开挖4h时,共挖40m,故选项D符合题意;故选:D.【点睛】此题考查了一次函数的图象,利用图象得到所需信息,能读懂函数图象并结合所得信息进行计算是解题的关键.4、B【解析】【分析】根据菜园的三边的和为24m,进而得出一个x与y的关系式,然后根据题意可得关于x的不等式,求解即可确定x的取值范围.【详解】解:根据题意得,菜园三边长度的和为24m,即,所以,由y>0得,,解得,当时,即,解得,∴,故选:B.【点睛】题目主要考查一次函数的运用及根据条件得出不等式求解,理解题意,利用不等式得出自变量的取值范围是解题关键.5、C【解析】【分析】根据一次函数的解析式,利用一次函数图象与系数的关系可得出一次函数的图象经过第一、二、四象限,此题得解.【详解】解:∵k=-2<0,b=1>0,∴一次函数y=-2x+1的图象经过第一、二、四象限,∴一次函数y=-2x+1的图象不经过第三象限.故选:C.【点睛】本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.6、B【解析】【分析】当直线y=kx−1过点A时,求出k的值,当直线y=kx−1过点B时,求出k的值,介于二者之间的值即为使直线y=kx−1与线段AB有交点的x的值.【详解】解:①当直线y=kx−1过点A时,将A(−2,1)代入解析式y=kx−1得,k=−1,②当直线y=kx−1过点B时,将B(1,2)代入解析式y=kx−1得,k=3,∵|k|越大,它的图象离y轴越近,∴当k≥3或k≤-1时,直线y=kx−1与线段AB有交点.故选:B.【点睛】本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线.7、A【解析】【分析】根据一次函数的增减性分析,即可得到答案.【详解】∵直线上,y随着x的增大而减小又∵ ∴ 故选:A.【点睛】本题考查了一次函数的增减性;解题的关键是熟练掌握一次函数图像的性质,从而完成求解.8、C【解析】【分析】求出正比函数的解析式,k值的绝对值表示车的速度;横轴上两个时间点的差表示乙走完全程所用时间,求出一次函数的解析式,确定它与正比例函数的交点坐标,横坐标即为二车相遇时间.【详解】设甲的解析式为y=kx,∴6k=300,解得k=50,∴=50x,∴甲车的速度为,∴①正确;∵乙晚出发2小时,∴乙车用了5-2=3(h)到达城,∴②错误;设,∴,∴,∴,∵,∴,即甲行驶4小时,乙追上甲,∴③正确;故选C.【点睛】本题考查了待定系数法确定函数的解析式,函数图像,交点坐标的确定,解二元一次方程组,熟练掌握待定系数法,准确求交点的坐标是解题的关键.9、C【解析】【分析】根据函数图象结合题意,可知两地的距离为,此时甲行驶了1小时,进而求得甲的速度,即可判断A、D选项,根据总路程除以速度即可求得甲行驶到地所需要的时间,根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,据此判断B选项,求得相遇时,甲距离地的距离,进而根据货车行驶的路程除以时间即可求得货车的速度,进而求得货车到达地所需要的时间.【详解】解:两地的距离为,故A选项正确,不符合题意;故D选项正确,不符合题意;根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,则即货车返回途中与甲相遇后又经过甲到地故B选项正确,相遇时为第4小时,此时甲行驶了,货车行驶了则货车的速度为则货车到达地所需的时间为即第小时故甲行驶小时时货车到达地故C选项不正确故选C【点睛】本题考查了一次函数的应用,弄清楚函数图象中各拐点的意义是解题的关键.10、B【解析】【分析】根据函数图象可知,小豪出发10分钟后,爸爸追上了小豪,根据此时爸爸的5分钟的行程等于小豪前5分钟的行程与后5分钟的行程和,得到出爸爸的速度与小豪骑自行车的速度的关系,设小豪的速度为x米/分,根据点(,0)列方程可得小豪与爸爸的速度,进而得出爸爸到达公司时,小豪距离书店路程.【详解】解:设小豪骑自行车的速度为xm/min,则爸爸的速度为:(5x+5×x)÷5=x(m/min),∵公司位于家正西方500米,∴(−10−2)×x=500+(5+2.5)x,解得x=200,∴小豪骑自行车的速度为200m/min,爸爸的速度为:200×=300m/min,爸爸到达公司时,丁丁距离商店路程为:3500-(−12)×(300+200)=m.综上,正确的选项为B.故选:B.【点睛】本题考查了一次函数的应用,学会正确利用图象信息,把问题转化为方程解决是本题的关键,属于中考常考题型.二、填空题1、【解析】【分析】设过的正比例函数为: 求解的值及函数解析式,再把代入函数解析式即可.【详解】解:设过的正比例函数为: 解得: 所以正比例函数为: 当时, 故答案为:【点睛】本题考查的是利用待定系数法求解正比例函数的解析式,正比例函数的性质,熟练的利用待定系数法列方程是解本题的关键.2、 上升 下降 增大 减小【解析】略3、##1.5>x>-3【解析】【分析】根据图象得出P点横坐标为1.5,联立y=kx-3和y=mx得m=k-2,再联立y=kx+6和y=(k-2)x解得x=-3,画草图观察函数图象得解集为.【详解】∵P是y=mx和y=kx-3的交点,点P的横坐标为1.5,∴解得m=k-2联立y=mx和y=kx+6得解得x=-3即函数y=mx和y=kx+6交点P’的横坐标为-3,观察函数图像得,满足kx−3<mx<kx+6的x的范围为:故答案为:【点睛】本题主要考查对一次函数与一元一次不等式的理解和掌握,解题的关键在于将不等式kx−3<mx<kx+6解集转化为直线y=mx与直线y=kx-3,直线y=kx+6相交的横坐标x的范围.4、k<1【解析】【分析】利用一次函数图象与系数的关系列出关于m的不等式k-1<0,然后解不等式即可.【详解】解:∵一次函数y=(k-1)x+3中,y随x的增大而减小,∴k-1<0,解得k<1;故答案为:k<1.【点睛】本题主要考查一次函数图象与系数的关系.解答本题注意理解:k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.5、-2【解析】【分析】由正比例函数的图象经过点的坐标,利用一次函数图象上点的坐标特征可得出-1=k+1,即可得出k值.【详解】解:∵正比例函数的图象经过点(1,-1),∴-1=k+1,∴k=-2.故答案为:-2.【点睛】本题考查了正比例函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx是解题的关键.三、解答题1、一次函数的解析式为y=x−4,与x轴交点的坐标是(4,0),与y轴的交点坐标是(0,−4).【解析】【分析】把x、y的值代入y=kx−4,通过解方程求出k的值得到一次函数的解析式,根据直线与x轴相交时,函数的y值为0,与y轴相交时,函数的x值为0求出该直线与坐标轴的交点坐标.【详解】解:∵一次函数y=kx−4,当x=3时,y=−1,∴−1=3k−4,解得k=1,∴一次函数的解析式为y=x−4,∵当y=0时,x=4,当x=0时,y=−4,∴该直线与x轴交点的坐标是(4,0),与y轴的交点坐标是(0,−4).【点睛】本题考查了待定系数法求一次函数的解析式,一次函数与坐标轴的交点.正确求出直线的解析式是解题的关键.2、 (1)(2)或【解析】【分析】(1)根据待定系数法求一次函数解析式即可;(2)先求,根据求得,进而根据,进而将的纵坐标代入,即可求得的坐标.(1)直线与x轴交于点,与y轴相交于点,设直线的解析式为则解得直线的解析式为(2)与y轴交于点C,与x轴交于点D,令,则,即令,则,即,,将代入解得将代入解得或【点睛】本题考查了待定系数法求一次函数解析式,求两直线与坐标轴围成的三角形面积,根据一次函数解析式求得坐标轴的交点坐标是解题的关键.3、 (1)3,3,画函数图象见解析;(2)①;②m>1;(3)见解析【解析】【分析】(1)列表、描点,连线画出函数图象即可;(2)观察图形,根据图象的性质即可得到结论;(3)结合(2)中图象的性质,即可得到结论.(1)解:列表:x﹣2﹣10123456y432101234 描点、连线,画出函数y=|x﹣2|图象如图:(2)解:点(m,y1),(m+2,y2)在函数y=|x﹣2|的图象上,观察图象:y=|x﹣2|图象关于直线x=2对称,且当x>2时,y随x增大而增大,当x<2时,y随x增大而减小,而m+2>m,①若y1=y2,则m+2-2=2-m,解得m=1;②若y1<y2,则m>1,故答案为:1,m>1;(3)解:对于函数y=k|x−b|,当k>0时,函数值y先随x的增大而减小,函数值为0后,再随x的增大而增大.【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质,数形结合解题是关键.4、 (1)k=2;(2)7;(3)≤m≤3【解析】【分析】(1)利用勾股定理求得B (-1,0),再利用待定系数法即可求解;(2)先求得直线l2的解析式,分别求得D、C、N的坐标,再利用四边形OCNB的面积=S△ODC- S△NBD求解即可;(3)先求得点P的纵坐标,根据题意列不等式组求解即可.(1)解:令x=0,则y=2;∴B (0,2),∴OB=2,∵AB=;∴OA=1,∴A (-1,0),把B (-1,0)代入y=kx+2得:0=-k+2,∴k=2;(2)解:∵直线l2平行于直线y=−2x.∴设直线l2的解析式为y=−2x+b.把(2,2)代入得2=−22+b,解得:b=6,∴直线l2的解析式为.令x=0,则y=6,则D (0,6);令y=0,则x=3,则C (3,0),由(1)得直线l1的解析式为.解方程组得:,∴N (1,4),四边形OCNB的面积=S△ODC- S△NBD==7;(3)解:∵点P的横坐标为m,∴点P的纵坐标为,∴PM=,∵PM≤3,且点P在线段CD上,∴≤3,且m≤3.解得:≤m≤3.【点睛】本题考查了两条直线相交与平行问题,待定系数法求函数的解析式,三角形的面积,正确的理解题意是解题的关键.5、 (1)见解析,(2)7(3),【解析】【分析】(1)根据将进行平移,使点移动到A,得出平移方式为向右移动5个单位向上移动1个单位,据此平移得到,顺次连接,则△即为所求;(2)根据网格的特点用长方形减去三个三角形的面积即可;(3)根据题意可知点在过点且平行于的直线上,先求得直线解析式为,根据平行,设直线解析式为,将点代入,求得,联立与即可求得点的坐标.(1)如图所示,△即为所求,由图知,点的坐标为;故答案为:;(2)的面积为,故答案为:7;(3)如图,过点作的平行线,与直线的交点即为所求点,由、,设直线解析式为则解得即直线的解析式为,设直线解析式为,将点代入,得:,解得,直线的解析式为,当时,,解得,点的坐标为,,故答案为:,.【点睛】本题考查了坐标与图形,平移作图,求一次函数解析式,一次函数的平移,两直线交点问题,掌握平移的性质是解题的关键.
相关试卷
这是一份数学第二十一章 一次函数综合与测试达标测试,共30页。试卷主要包含了下列不能表示是的函数的是等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十一章 一次函数综合与测试综合训练题,共25页。试卷主要包含了若一次函数的图像经过第一等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试复习练习题,共35页。试卷主要包含了一次函数的大致图象是等内容,欢迎下载使用。