开学活动
搜索
    上传资料 赚现金

    2021-2022学年冀教版八年级数学下册第二十一章一次函数章节训练试卷(无超纲)

    2021-2022学年冀教版八年级数学下册第二十一章一次函数章节训练试卷(无超纲)第1页
    2021-2022学年冀教版八年级数学下册第二十一章一次函数章节训练试卷(无超纲)第2页
    2021-2022学年冀教版八年级数学下册第二十一章一次函数章节训练试卷(无超纲)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第二十一章 一次函数综合与测试随堂练习题

    展开

    这是一份冀教版八年级下册第二十一章 一次函数综合与测试随堂练习题,共32页。试卷主要包含了若一次函数等内容,欢迎下载使用。
    八年级数学下册第二十一章一次函数章节训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,在Rt△ABO中,∠OBA=90°,A(4,4),且,点D为OB的中点,点P为边OA上的动点,使四边形PDBC周长最小的点P的坐标为( )

    A.(2,2) B.(,) C.(,) D.(,)
    2、已知是一次函数,则m的值是( )
    A.-3 B.3 C.±3 D.±2
    3、如图,在平面直角坐标系中,线段AB的端点为A(﹣2,1),B(1,2),若直线y=kx﹣1与线段AB有交点,则k的值不能是(  ).

    A.-2 B.2
    C.4 D.﹣4
    4、如图,直线与x轴交于点B,与y轴交于点C,点,D为线段的中点,P为y轴上的一个动点,连接、,当的周长最小时,点P的坐标为( )

    A. B. C. D.
    5、如图,平面直角坐标系中,直线分别交x轴、y轴于点B、A,以AB为一边向右作等边,以AO为一边向左作等边,连接DC交直线l于点E.则点E的坐标为( )

    A. B.
    C. D.
    6、下列图形中,表示一次函数y=mx+n与正比例函数y=﹣mnx(m,n为常数,且mn≠0)的图象不正确的是( )
    A. B.
    C. D.
    7、甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.

    则下列结论:
    ①A,B两城相距300千米;
    ②乙车比甲车晚出发1小时,却早到1小时;
    ③乙车出发后2.5小时追上甲车;
    ④当甲、乙两车相距50千米时,或.
    其中正确的结论有( )
    A.1个 B.2个 C.3个 D.4个
    8、一辆货车从甲地到乙地,一辆轿车从乙地到甲地,两车沿同一条笔直的公路分别从甲、乙两地同时出发,匀速行驶.两车离乙地的距离(单位:)和两车行驶时间(单位:)之间的关系如图所示.下列说法错误的是( ).

    A.两车出发时相遇 B.甲、乙两地之间的距离是
    C.货车的速度是 D.时,两车之间的距离是
    9、若一次函数(,为常数,)的图象不经过第三象限,那么,应满足的条件是( )
    A.且 B.且
    C.且 D.且
    10、直线和在同一直角坐标系中的图象可能是( )
    A. B.
    C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、一次函数y=(k﹣1)x+3中,函数值y随x的增大而减小,则k的取值范围是_____.
    2、在平面直角坐标系中,一次函数和的图象如图所示,则不等式的解集为______

    3、求kx+b>0(或<0)(k≠0)的解集
    从函数值看:y=kx+b的值大于(或小于)0时,_____的取值范围
    从函数图象看:直线y=kx+b在_____上方(或下方)的x取值范围
    4、在运用一次函数解决实际问题时,首先判断问题中的两个变量之间是不是____关系,当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.
    5、如图,点C的坐标是(2,2),A为坐标原点,CB⊥x轴于B,CD⊥y轴于D,点E是线段BC的中点,过点A的直线y=kx交线段DC于点F,连接EF,若AF平分∠DFE,则k的值为_________.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4).
    (1)求对角线AB所在直线的函数关系式;
    (2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;
    (3)若点P是直线AB上的一个动点,当△PAM的面积与长方形OACB的面积相等时,求点P的坐标.

    2、对于平面直角坐标系xOy中的图形M和点P,给出如下定义:如果图形M上存在点Q,使得0≤PQ≤2,那么称点P为图形M的和谐点.已知点A(﹣4,3),B(4,3).

    (1)在点P1(﹣2,1),P2(﹣1,0),P3(5,4)中,直线AB的和谐点是   ;
    (2)点P为直线y=x+1上一点,若点P为直线AB的和谐点,求点P的横坐标t的取值范围;
    (3)已知点C(4,﹣3),D(﹣4,﹣3),如果直线y=x+b上存在矩形ABCD的和谐点E,F,使得线段EF上的所有点都是矩形ABCD的和谐点,且EF>2,请直接写出b的取值范围.
    3、请用已学过的方法研究一类新函数y=k|x﹣b|(k,b为常数,且k≠0)的图象和性质:
    (1)完成表格,并在给出的平面直角坐标系中画出函数y=|x﹣2|的图象;
    x
    ﹣2
    ﹣1
    0
    1
    2
    3
    4
    5
    6
    y
    4

    2
    1
    0
    1
    2

    4


    (2)点(m,y1),(m+2,y2)在函数y=|x﹣2|的图象上.
    ①若y1=y2,则m的值为 ;
    ②若y1<y2,则m的取值范围是 ;
    (3)结合函数图像,写出该函数的一条性质.
    4、如图,一次函数的图象与轴交于点,与正比例函数的图象相交于点,且.

    (1)分别求出这两个函数的解析式;
    (2)点在轴上,且是等腰三角形,请直接写出点的坐标.
    5、国庆期间,小龚自驾游去了离家156千米的月亮湾,如图是小龚离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.

    (1)求小龚出发36分钟时,离家的距离;
    (2)求出AB段的图象的函数解析式;
    (3)若小龚离目的地还有72千米,求小龚行驶了多少小时.

    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    先确定点D关于直线AO的对称点E(0,2),确定直线CE的解析式,直线AO的解析式,两个解析式的交点就是所求.
    【详解】
    ∵∠OBA=90°,A(4,4),且,点D为OB的中点,
    ∴点D(2,0),AC=1,BC=3,点C(4,3),
    设直线AO的解析式为y=kx,
    ∴4=4k,
    解得k=1,
    ∴直线AO的解析式为y=x,
    过点D作DE⊥AO,交y轴于点E,交AO于点F,
    ∵∠OBA=90°,A(4,4),
    ∴∠AOE=∠AOB=45°,
    ∴∠OED=∠ODE=45°,OE=OD,
    ∴DF=FE,
    ∴点E是点D关于直线AO的对称点,
    ∴点E(0,2),
    连接CE,交AO于点P,此时,点P是四边形PCBD周长最小的位置,
    设CE的解析式为y=mx+n,

    ∴,
    解得,
    ∴直线CE的解析式为y=x+2,
    ∴y=14x+2y=x,
    解得,
    ∴使四边形PDBC周长最小的点P的坐标为(,),
    故选C.
    【点睛】
    本题考查了一次函数的解析式,将军饮马河原理,熟练掌握待定系数法和将军饮马河原理是解题的关键.
    2、A
    【解析】

    3、B
    【解析】
    【分析】
    当直线y=kx−1过点A时,求出k的值,当直线y=kx−1过点B时,求出k的值,介于二者之间的值即为使直线y=kx−1与线段AB有交点的x的值.
    【详解】
    解:①当直线y=kx−1过点A时,将A(−2,1)代入解析式y=kx−1得,k=−1,
    ②当直线y=kx−1过点B时,将B(1,2)代入解析式y=kx−1得,k=3,
    ∵|k|越大,它的图象离y轴越近,
    ∴当k≥3或k≤-1时,直线y=kx−1与线段AB有交点.
    故选:B.
    【点睛】
    本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线.
    4、A
    【解析】
    【分析】
    作点关于轴的对称点,连接,交轴于点,则,进而根据对称性求得当点P与重合时,的周长最小,通过求直线的解析式,即可求得点的坐标
    【详解】
    解:如图,作点关于轴的对称点,连接,交轴于点,则,连接,

    的周长,点是定点,则的长不变,
    当重合时,的周长最小,
    由,令,令,则

    是的中点

    ,点是关于轴对称的点

    设直线的解析式为:,将,代入,

    解得
    直线的解析式为:
    令,则

    故选A
    【点睛】
    本题考查了轴对称的性质求最值,求一次函数解析式,求直线与坐标轴的交点,求线段中点坐标,掌握根据轴对称的性质求线段和的最值是解题的关键.
    5、C
    【解析】
    【分析】
    由题意求出C和D点坐标,求出直线CD的解析式,再与直线AB解析式联立方程组即可求出交点E的坐标.
    【详解】
    解:令直线中,得到,故,
    令直线中,得到,故,
    由勾股定理可知:,
    ∵,且,
    ∴,,
    过C点作CH⊥x轴于H点,过D点作DF⊥x轴于F,如下图所示:

    ∵为等边三角形,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    同理,∵为等边三角形,
    ∴,,
    ∴,
    ∴,
    ∴,
    设直线CD的解析式为:y=kx+b,代入和,
    得到:,解得,
    ∴CD的解析式为:,
    与直线联立方程组,
    解得,故E点坐标为,
    故选:C.
    【点睛】
    本题考查的是一次函数图象上点的坐标特征,本题的关键是求出点C、D的坐标,进而求解.
    6、B
    【解析】
    【分析】
    利用一次函数的性质逐项进行判断即可解答.
    【详解】
    解:A、由一次函数的图象可知,,故;由正比例函数的图象可知,两结论一致,故本选项不符合题意;
    B、由一次函数的图象可知,,故;由正比例函数的图象可知,两结论不一致,故本选项符合题意;
    C. 由一次函数的图象可知,,故;由正比例函数的图象可知,两结论一致,故本选项不符合题意;
    D. 由一次函数的图象可知,,故;由正比例函数的图象可知,两结论一致,故本选项不符合题意;
    故选B.
    【点睛】
    本题考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数的图象有四种情况:当,函数的图象经过第一、二、三象限;当,函数的图象经过第一、三、四象限;当,函数的图象经过第一、二、四象限;当,函数的图象经过第二、三、四象限.
    7、B
    【解析】
    【分析】
    当不动时,距离300千米,就是A,B两地的距离;甲匀速运动,走完全程用时5小时,乙走完全程用时3小时,确定甲,乙的函数解析式,求交点坐标;分甲出发,乙未动,距离为50千米,甲出发,乙出发,且甲在前50距离50千米,甲在后距离50千米,乙到大时距离为50千米四种情形计算即可.
    【详解】
    ∵(0,300)表示不动时,距离300千米,就是A,B两地的距离,
    ∴①正确;
    ∵甲匀速运动,走完全程用时5小时,乙走完全程用时3小时,
    ∴乙车比甲车晚出发1小时,却早到1小时;
    ∴②正确;
    设,
    ∴300=5m,
    解得m=60,
    ∴;
    设,

    解得,
    ∴;

    解得t=2.5,
    ∴2.5-1=1.5,
    ∴乙车出发后1.5小时追上甲车;
    ∴③错误;
    当乙未出发时,,
    解得t=;
    当乙出发,且在甲后面时,,
    解得t=;
    当乙出发,且在甲前面时,,
    解得t=;
    当乙到大目的地,甲自己行走时,,
    解得t=;
    ∴④错误;
    故选B.
    【点睛】
    本题考查了函数的图像,一次函数的解析式确定,交点的意义,熟练掌握待定系数法,准确捕获图像信息是解题的关键.
    8、D
    【解析】
    【分析】
    根据函数图象分析,当时,函数图象有交点,即可判断A选项;根据最大距离为360即可判断B选项,根据A选项可得两车的速度进而判断C,根据时间乘以速度求得两车的路程,进而求得两车的距离即可判断D选项.
    【详解】
    解:根据函数图象可知,当时,,总路程为360km,
    所以,轿车的速度为,货车的速度为:
    故A,B,C正确
    时,轿车的路程为,货车的路程为,
    则两车的距离为
    故D选项不正确
    故选D
    【点睛】
    本题考查了一次函数的应用,从图象上获取信息是解题的关键.
    9、D
    【解析】
    【分析】
    根据一次函数图象与系数的关系解答即可.
    【详解】
    解:一次函数、是常数,的图象不经过第三象限,
    且,
    故选:D.
    【点睛】
    本题主要考查了一次函数图象与系数的关系,直线y=kx+b所在的位置与k、b的符号有直接的关系为:k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
    10、D
    【解析】
    【分析】
    根据两个解析式中一次项系数的符号相反、常数项的符号相反,结合一次函数的图象与性质即可解决.
    【详解】
    根据直线和的解析式知,k与-2k符号相反,b与-b符号相反(由图知b≠0);
    A选项中的直线与y轴的交点均在y轴正半轴上,故不合题意;
    B、C两选项中两直线从左往右均是上升的,则k与-2k全为正,也不合题意;
    D选项中两直线满足题意;
    故选:D
    【点睛】
    本题考查了一次函数的图象与性质,掌握一次函数的图象与性质,数形结合是关键本题的关键.
    二、填空题
    1、k<1
    【解析】
    【分析】
    利用一次函数图象与系数的关系列出关于m的不等式k-1<0,然后解不等式即可.
    【详解】
    解:∵一次函数y=(k-1)x+3中,y随x的增大而减小,
    ∴k-1<0,
    解得k<1;
    故答案为:k<1.
    【点睛】
    本题主要考查一次函数图象与系数的关系.解答本题注意理解:k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.
    2、
    【解析】
    【分析】
    根据函数图象写出一次函数在上方部分的x的取值范围即可.
    【详解】
    解:一次函数和的图象交于点
    所以,不等式的解集为.
    故答案为:
    【点睛】
    本题考查了一次函数的交点问题及不等式,数形结合是解决此题的关键.
    3、 x x轴
    【解析】

    4、一次函数
    【解析】

    5、3或1
    【解析】
    【分析】
    分两种情况:①当点F在DC之间时,作出辅助线,求出点F的坐标即可求出k的值;②当点F与点C重合时求出点F的坐标即可求出k的值.
    【详解】
    解:①如图,作AG⊥EF交EF于点G,连接AE,

    ∵AF平分∠DFE,
    ∴DF=AG=2
    在RT△ADF和RT△AGF中,

    ∴RT△ADF≌RT△AGF
    ∴DF=FG
    ∵点E是BC边的中点,
    ∴BE=CE=1
    ∴AE=

    ∴ 在RT△FCE中,EF2=FC2+CE2,即(DF+1)2=(2-DF)2+1,
    解得,
    ∴点,
    把点F的坐标代入y=kx得:2=,解得k=3;
    ②当点F与点C重合时,
    ∵四边形ABCD是正方形,
    ∴AF平分∠DFE,
    ∴F(2,2),
    把点F的坐标代入y=kx得:2=2k,解得k=1.
    故答案为:1或3.
    【点睛】
    本题主要考查了一次函数综合题,涉及角平分线的性质,三角形全等的判定及性质,正方形的性质理,及勾股定解题的关键是分两种情况求出k.
    三、解答题
    1、(1);(2)5;(3)点P的坐标为(,-)或(-,)
    【解析】
    【分析】
    (1)由坐标系中点的意义结合图形可得出A、B点的坐标,设出对角线AB所在直线的函数关系式,由待定系数法即可求得结论;
    (2)由勾股定理求出AB的长,再结合线段垂直平分线的性质,可得AM=BM,OM=OB−BM,再次利用勾股定理得出AM的长;
    (3)(方法一)先求出直线AM的解析式,设出P点坐标,由点到直线的距离求出AM边上的高h,再结合三角形面积公式与长方形面积公式即可求出P点坐标;
    (方法二)由△PAM的面积与长方形OACB的面积相等可得出S△PAM的值,设点P的坐标为(x,−x+4),分点P在AM的右侧及左侧两种情况,找出关于x的一元一次方程,解之即可得出点P的坐标,此题得解.
    【详解】
    解:(1)∵四边形AOBC为长方形,且点C的坐标是(8,4),
    ∴AO=CB=4,OB=AC=8,
    ∴A点坐标为(0,4),B点坐标为(8,0).
    设对角线AB所在直线的函数关系式为y=kx+b,
    则有,解得:,
    ∴对角线AB所在直线的函数关系式为y=-x+4.
    (2)∵∠AOB=90°,
    ∴勾股定理得:AB==4,
    ∵MN垂直平分AB,
    ∴BN=AN=AB=2.
    ∵MN为线段AB的垂直平分线,
    ∴AM=BM
    设AM=a,则BM=a,OM=8-a,
    由勾股定理得,a2=42+(8-a)2,
    解得a=5,即AM=5.
    (3)(方法一)∵OM=3,
    ∴点M坐标为(3,0).
    又∵点A坐标为(0,4),
    ∴直线AM的解析式为y=-x+4.
    ∵点P在直线AB:y=-x+4上,
    ∴设P点坐标为(m,-m+4),
    点P到直线AM:x+y-4=0的距离h==.
    △PAM的面积S△PAM=AM•h=|m|=SOABC=AO•OB=32,
    解得m=± ,
    故点P的坐标为(,-)或(-,).

    (方法二)∵S长方形OACB=8×4=32,
    ∴S△PAM=32.
    设点P的坐标为(x,-x+4).
    当点P在AM右侧时,S△PAM=MB•(yA-yP)=×5×(4+x-4)=32,
    解得:x=,
    ∴点P的坐标为(,-);
    当点P在AM左侧时,S△PAM=S△PMB-S△ABM=MB•yP-10=×5(-x+4)-10=32,
    解得:x=-,
    ∴点P的坐标为(-,).
    综上所述,点P的坐标为(,-)或(-,).
    【点睛】
    本题考查了坐标系中点的意、勾股定理、点到直线的距离、三角形和长方形的面积公式,解题的关键:(1)根据坐标系中点的意义,找到A、B点的坐标;(2)由线段垂直平分线的性质和勾股定理找出BM的长度;(3)(方法一)结合点到直线的距离、三角形和长方形的面积公式找到关于m的一元一次方程;(方法二)利用分割图形求面积法找出关于x的一元一次方程.本题属于中等题,难度不大,运算量不小,这里尤其要注意点P有两个.
    2、 (1)P1,P3
    (2)0≤t≤4
    (3)3≤b<5或﹣5<b≤﹣3
    【解析】
    【分析】
    (1)作出直线AB图象,根据到直线的距离即可得出结论;
    (2)设出点P的坐标,根据和谐点的定义找出临界值即可求出t的取值范围;
    (3)根据图象找出临界值,再根据对称性写全取值范围即可.
    (1)
    解:作AB图象如图,
    P2到AB的距离为3不符合和谐点条件,
    P1、P3点到直线AB的距离在0~2之间,符合和谐点的条件,
    故直线AB的和谐点为P1,P3;
    故答案为:P1,P3;
    (2)
    解:∵点P为直线y=x+1上一点,
    ∴设P点坐标为(t,t+1),
    寻找直线上的点,使该点到AB垂线段的距离为2,
    ∴|t+1-3|=2,
    解得t=0或t'=4,
    ∴0≤t≤4;
    (3)
    解:如图当b=5时,图中线段EF上的点都是矩形ABCD的和谐点,且EF=2,
    当b=3时,线段E'F'上的点都是矩形ABCD的和谐点,E'F'>2,
    ∴3≤b<5,
    由对称性同法可知﹣5<b≤﹣3也满足条件,
    故3≤b<5或﹣5<b≤﹣3.

    【点睛】
    本题主要考查一次函数的知识,弄清新定义是解题的关键.
    3、 (1)3,3,画函数图象见解析;
    (2)①;②m>1;
    (3)见解析
    【解析】
    【分析】
    (1)列表、描点,连线画出函数图象即可;
    (2)观察图形,根据图象的性质即可得到结论;
    (3)结合(2)中图象的性质,即可得到结论.
    (1)
    解:列表:
    x
    ﹣2
    ﹣1
    0
    1
    2
    3
    4
    5
    6
    y
    4
    3
    2
    1
    0
    1
    2
    3
    4

    描点、连线,画出函数y=|x﹣2|图象如图:

    (2)
    解:点(m,y1),(m+2,y2)在函数y=|x﹣2|的图象上,
    观察图象:y=|x﹣2|图象关于直线x=2对称,且当x>2时,y随x增大而增大,当xm,
    ①若y1=y2,则m+2-2=2-m,解得m=1;
    ②若y1<y2,则m>1,
    故答案为:1,m>1;
    (3)
    解:对于函数y=k|x−b|,当k>0时,函数值y先随x的增大而减小,函数值为0后,再随x的增大而增大.
    【点睛】
    本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质,数形结合解题是关键.
    4、 (1)正比例函数的解析式为:,一次函数的解析式为:
    (2)或或或
    【解析】
    【分析】
    (1)把点代入可得,再由,可得点 ,即可求解;
    (2)分三种情况:当OP=OA=5时,当AP=OA时,当AP=OP时,即可求解.
    (1)
    解:∵一次函数的图象与轴交于点,与正比例函数的图象相交于点,
    ∴,解得:
    ∴正比例函数的解析式为:,
    ∵,
    ∴ ,
    ∵,
    ∴ ,
    ∴点 ,
    把点, 代入,得:
    b=-53k2+b=4 ,解得: ,
    ∴一次函数的解析式为:;
    (2)
    解:当OP=OA=5时,点的坐标为或;
    当AP=OA时,过点A作 轴于点C,

    ∴OC=PC=3,
    ∴OP=6,
    ∴点;
    当AP=OP时,过点P作PD⊥OA于点D,过点D作 轴于点E,

    ∴点D为AO的中点,即 ,
    ∵点,
    ∴点 ,
    ∴ ,
    设点 ,则 ,
    ∴ ,
    ∵ ,
    ∴ ,
    即 ,
    解得: 或 (舍去)
    ∴点 ,
    综上所述,点P的坐标为或或或.
    【点睛】
    本题主要考查了一次函数的图象和性质,等腰三角形的性质,熟练掌握一次函数的图象和性质,等腰三角形的性质,利用分类讨论思想和数形结合解答是解题的关键.
    5、 (1)36千米
    (2)y=90x-24 (0.8≤x≤2)
    (3)1.2小时
    【解析】
    【分析】
    (1)由OA段可求得此时小龚驾车的速度,从而可求得36分钟离家的距离;
    (2)用待定系数法.AB段过点A与B,把这两点的坐标代入所设函数解析式中即可求得函数解析式;
    (3)由题意可得小龚离家的距离,根据(2)中求得的函数解析式的函数值,解方程即可求得x的值,从而求得小龚行驶的时间.
    (1)
    在OA段,小龚行驶的速度为:48÷0.8=60(千米/时),36分钟=0.6小时,则小龚出发36分钟时,离家的距离为60×0.6=36(千米);
    (2)
    由图象知: ,
    设AB段的函数解析式为:
    把A、B两点的坐标分别代入上式得:
    解得:
    ∴AB段的函数解析式为(0.8≤x≤2)
    (3)
    由图象知,当小龚离目的地还有72千米时,他已行驶了156−72=84(千米)
    所以在中,当y=84时,即,得
    即小龚离目的地还有72千米,小龚行驶了1.2小时.
    【点睛】
    本题考查了一次函数(正比例函数)的图象与性质,待定系数法求函数解析式,已知函数值求自变量的值等知识,数形结合是本题的关键.

    相关试卷

    初中数学第二十一章 一次函数综合与测试一课一练:

    这是一份初中数学第二十一章 一次函数综合与测试一课一练,共26页。试卷主要包含了如图所示,直线分别与轴,如图,一次函数y=kx+b等内容,欢迎下载使用。

    数学第二十一章 一次函数综合与测试随堂练习题:

    这是一份数学第二十一章 一次函数综合与测试随堂练习题,共23页。试卷主要包含了若一次函数的图像经过第一等内容,欢迎下载使用。

    初中数学第二十一章 一次函数综合与测试当堂检测题:

    这是一份初中数学第二十一章 一次函数综合与测试当堂检测题,共23页。试卷主要包含了如图,已知点K为直线l等内容,欢迎下载使用。

    英语朗读宝
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map