搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年冀教版八年级数学下册第二十一章一次函数单元测试试卷

    2021-2022学年冀教版八年级数学下册第二十一章一次函数单元测试试卷第1页
    2021-2022学年冀教版八年级数学下册第二十一章一次函数单元测试试卷第2页
    2021-2022学年冀教版八年级数学下册第二十一章一次函数单元测试试卷第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学八年级下册第二十一章 一次函数综合与测试单元测试达标测试

    展开

    这是一份数学八年级下册第二十一章 一次函数综合与测试单元测试达标测试,共30页。试卷主要包含了下列不能表示是的函数的是等内容,欢迎下载使用。
    八年级数学下册第二十一章一次函数单元测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、甲、乙两地之间是一条直路,在全民健身活动中,王明跑步从甲地往乙地,陈启浩骑自行车从乙地往甲地,两人同时出发,陈启浩先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法中错误的是(  )

    A.两人出发1小时后相遇
    B.王明跑步的速度为8km/h
    C.陈启浩到达目的地时两人相距10km
    D.陈启浩比王明提前1.5h到目的地
    2、甲、乙两个工程队分别同时开挖两段河集,所挖河架的长度(m)与挖掘时同(h)之间的关系如图所示,根据图像所提供的信息,下列说法正确的是( )

    A.甲队的挖掘速度大于乙队的挖掘速度
    B.开挖2h时,甲、乙两队所挖的河渠的长度相差8m
    C.乙队在的时段,与之间的关系式为
    D.开挖4h时,甲、乙两队所挖的河渠的长度相等
    3、AB两地相距20km,甲从A地出发向B地前进,乙从B地出发向A地前进,两人沿同一直线同时出发,甲先以8km/h的速度前进1小时,然后减慢速度继续匀速前进,甲乙两人离A地的距离s(km)与时间t(h)的关系如图所示,则甲出发( )小时后与乙相遇.

    A.1.5 B.2 C.2.5 D.3
    4、下列不能表示是的函数的是( )
    A.

    0
    5
    10
    15

    3
    3.5
    4
    4.5
    B.
    C.
    D.
    5、如图,点A的坐标为,点B是x轴正半轴上的动点,以AB为腰作等腰直角,使,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )

    A. B.
    C. D.
    6、下列各点中,不在一次函数的图象上的是( )
    A. B.
    C. D.
    7、点和都在直线上,且,则与的关系是( )
    A. B. C. D.
    8、如图,甲乙两人沿同一直线同时出发去往B地,甲到达B地后立即以原速沿原路返回,乙到达B地后停止运动,已知运动过程中两人到B地的距离y(km)与出发时间t(h)的关系如图所示,下列说法错误的是(  )

    A.甲的速度是16km/h
    B.出发时乙在甲前方20km
    C.甲乙两人在出发后2小时第一次相遇
    D.甲到达B地时两人相距50km
    9、如图,点,,若点P为x轴上一点,当最大时,点P的坐标为(   )

    A. B. C. D.
    10、已知点,都在直线上,则、大小关系是( )
    A. B. C. D.不能计较
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,直线与相交于点,则关于x,y的二元一次方程组的解为______.

    2、如图,直线l是一次函数y=kx+b的图象,填空:

    (1)b=______,k=______;
    (2)当x=30时,y=______;
    (3)当y=30时,x=______.
    3、一般地,形如y=kx+b(k≠0,k、b为常数)的函数,叫做______函数.注意:k是常数,k≠0,k可以是正数、也可以是负数;b可以取______ .
    4、关于正比例函数y=2x,有下列结论:①函数图象都经过点(2,1);②函数图象经过第二、第四象限;③y随x的增大而增大;④不论x取何值,总有y>0,其中,错误的结论是______.
    5、在运用一次函数解决实际问题时,首先判断问题中的两个变量之间是不是____关系,当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.
    三、解答题(5小题,每小题10分,共计50分)
    1、已知一次函数图象与直线平行且过点.
    (1)求一次函数解析式;
    (2)若(1)中一次函数图象,分别与、轴交于、两点,求、两点坐标;
    (3)若点在轴上,且,求点坐标.
    2、我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费.该市某户居民10月份用水吨,应交水费元.
    (1)若,请写出与的函数关系式.
    (2)若,请写出与的函数关系式.
    (3)如果该户居民这个月交水费23元,那么这个月该户用了多少吨水?
    3、平面直角坐标系内有一平行四边形点,,,,有一次函数的图象过点

    (1)若此一次函数图象经过平行四边形边的中点,求的值
    (2)若此一次函数图象与平行四边形始终有两个交点,求出的取值范围
    4、如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)(3,4).

    (1)若△A1B1C1与△ABC关于y轴成轴对称,请在网格中画出△A1B1C1,并写出△A1B1C1三顶点坐标:A1   ,B1   ,C1   ;
    (2)计算△ABC的面积;
    (3)若点P为x轴上一点,当PA+PB最小时,写出此时P点坐标    .
    5、在平面直角坐标系xOy中,对于线段AB和点C,若△ABC是以AB为一条直角边,且满足AC>AB的直角三角形,则称点C为线段AB的“关联点”,已知点A的坐标为(0,1).

    (1)若B(2,1),则点D(3,1),E(2,0),F(0,-3),G(-1,-2)中,是AB关联点的有_______;
    (2)若点B(-1,0),点P在直线y=2x-3上,且点P为线段AB的关联点,求点P的坐标;
    (3)若点B(b,0)为x轴上一动点,在直线y=2x+2上存在两个AB的关联点,求b的取值范围.

    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    根据函数图象中的数据,可以分别计算出两人的速度,从而可以判断各个选项中的说法是否正确,从而可以解答本题.
    【详解】
    解:由图象可知,
    两人出发1小时后相遇,故选项A正确;
    王明跑步的速度为24÷3=8(km/h),故选项B正确;
    陈启浩的速度为:24÷1-8=16(km/h),
    陈启浩从开始到到达目的地用的时间为:24÷16=1.5(h),
    故陈启浩到达目的地时两人相距8×1.5=12(km),故选项C错误;
    陈启浩比王提前3-1.5=1.5h到目的地,故选项D正确;
    故选:C.
    【点睛】
    本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.
    2、D
    【解析】
    【分析】
    根据图象依次分析判断.
    【详解】
    解:甲队的挖掘速度在2小时前小于乙队的挖掘速度,2小时后大于乙队的速度,故选项A不符合题意;
    开挖2h时,乙队所挖的河渠的长度为30m,
    甲队每小时挖=10m,故2h时,甲队所挖的河渠的长度为20m,
    开挖2h时,甲、乙两队所挖的河渠的长度相差30-20=10m,故选项B不符合题意;
    由图象可知,乙队2小时前后的挖掘速度发生了改变,故选项C不符合题意;
    甲队开挖4h时,所挖河渠的长度为,
    乙队开挖2小时后的函数解析式为,当开挖4h时,共挖40m,故选项D符合题意;
    故选:D.
    【点睛】
    此题考查了一次函数的图象,利用图象得到所需信息,能读懂函数图象并结合所得信息进行计算是解题的关键.
    3、B
    【解析】
    【分析】
    根据题意结合图象分别求出甲减速后的速度已经乙的速度,再列方程解答即可.
    【详解】
    解:甲减速后的速度为:(20﹣8)÷(4﹣1)=4(km/h),乙的速度为:20÷5=4(km/h),
    设甲出发x小时后与乙相遇,
    根据题意得8+4(x﹣1)+4x=20,
    解得x=2.
    即甲出发2小时后与乙相遇.
    故选:B.
    【点睛】
    本题考查了一次函数的应用,解题的关键是读懂图象信息,灵活应用速度、路程、时间之间的关系解决问题.
    4、B
    【解析】
    【分析】
    根据函数的定义(如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,我们就把x称为自变量,把y称为因变量,y是x的函数)及利用待定系数法确定一次函数解析式依次进行判断即可得.
    【详解】
    解:A、根据图表进行分析为一次函数,设函数解析式为:,
    将,,,
    分别代入解析式为:

    解得:,,
    所以函数解析式为:,
    ∴y是x的函数;
    B、从图象上看,一个x值,对应两个y值,不符合函数定义,y不是x的函数;
    C、D选项从图象及解析式看可得y是x的函数.
    故选:B.
    【点睛】
    题目主要考查函数的定义及利用待定系数法确定一次函数解析式,深刻理解函数定义是解题关键.
    5、A
    【解析】
    【分析】
    根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.
    【详解】
    解:作AD∥x轴,作CD⊥AD于点D,如图所示,

    由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,
    ∵AD∥x轴,
    ∴∠DAO+∠AOB=180°,
    ∴∠DAO=90°,
    ∴∠OAB+∠BAD=∠BAD+∠DAC=90°,
    ∴∠OAB=∠DAC,
    在△OAB和△DAC中

    ∴△OAB≌△DAC(AAS),
    ∴OB=CD,
    ∴CD=x,
    ∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,
    ∴y=x+1(x>0).
    故选:A.
    【点睛】
    本题考查动点问题的函数图象,全等三角形的性质和判定,等腰三角形的定义.解题的关键是明确题意,建立相应的函数关系式,根据函数关系式判断出正确的函数图象.
    6、B
    【解析】
    【分析】
    根据一次函数解析变形可得,进而判断即可.
    【详解】
    解:∵

    A. ,,则在一次函数的图象上 ,不符合题意;
    B. ,,则不在一次函数的图象上,符合题意;
    C. ,,则在一次函数的图象上 ,不符合题意;
    D. ,,,则在一次函数的图象上 ,不符合题意;
    故选B
    【点睛】
    本题考查了一次函数的性质,满足一次函数解析式的点都在一次函数图象上,掌握一次函数的性质是解题的关键.
    7、A
    【解析】
    【分析】
    根据一次函数图象的增减性,结合横坐标的大小关系,即可得到答案.
    【详解】
    解:∵直线y=-x+m的图象y随着x的增大而减小,
    又∵x1≥x2,点A(x1,y1)和B(x2,y2)都在直线y=-x+m上,
    ∴y1≤y2,
    故选:A.
    【点睛】
    本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.
    8、D
    【解析】
    【分析】
    由图可知甲10小时所走路程是160km,即得甲的速度是16km/h,可判定A;根据出发时甲距B地80千米,乙距B地60千米,可判断B;由图得乙的速度是6km/h,即可得甲2小时比乙多走20km,可判断C;甲5小时达到B地可求此时乙所走路程为30km,即得甲到达B地时两人相距30km,可判断D.
    【详解】
    解:由图可知:甲10小时所走路程是80×2=160(km),
    ∴甲的速度是16km/h,故A正确,不符合题意;
    ∵出发时甲距B地80千米,乙距B地60千米,
    ∴发时乙在甲前方20km,故B正确,不符合题意;
    由图可得乙的速度是60÷10=6(km/h),
    ∴出发2小时,乙所走路程是6×2=12(km),甲所走路程为16×2=32(km),
    即甲2小时比乙多走20km,
    ∴甲乙两人在出发后2小时第一次相遇,故C正确,不符合题意;
    ∵甲5小时达到B地,此时乙所走路程为5×6=30(km),
    ∴甲到达B地时两人相距60-30=30(km),故D不正确,符合题意;
    故选:D.
    【点睛】
    本题考查一次函数的应用,解题的关键是理解图象中特殊点的意义.
    9、A
    【解析】
    【分析】
    作点A关于x轴的对称点,连接并延长交x轴于P,根据三角形任意两边之差小于第三边可知,此时的最大,利用待定系数法求出直线的函数表达式并求出与x轴的交点坐标即可.
    【详解】
    解:如图,作点A关于x轴的对称点,则PA=,
    ∴≤(当P、、B共线时取等号),
    连接并延长交x轴于P,此时的最大,且点的坐标为(1,-1),
    设直线的函数表达式为y=kx+b,
    将(1,-1)、B(2,-3)代入,得:
    ,解得:,
    ∴y=-2x+1,
    当y=0时,由0=-2x+1得:x=,
    ∴点P坐标为(,0),
    故选:A

    【点睛】本题考查坐标与图形变换=轴对称、三角形的三边关系、待定系数法求一次函数的解析式、一次函数与x轴的交点问题,熟练掌握用三角形三边关系解决最值问题是解答的关键.
    10、C
    【解析】
    【分析】
    根据一次函数的增减性解答.
    【详解】
    解:∵直线,k=-2

    相关试卷

    冀教版八年级下册第二十一章 一次函数综合与测试单元测试课后测评:

    这是一份冀教版八年级下册第二十一章 一次函数综合与测试单元测试课后测评,共30页。试卷主要包含了若实数,若一次函数等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试单元测试课时作业:

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试单元测试课时作业,共32页。试卷主要包含了若一次函数的图像经过第一等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试单元测试巩固练习:

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试单元测试巩固练习,共30页。试卷主要包含了直线不经过点,若实数等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map