开学活动
搜索
    上传资料 赚现金

    精品试题冀教版八年级数学下册第二十章函数定向测试试卷(含答案详解)

    精品试题冀教版八年级数学下册第二十章函数定向测试试卷(含答案详解)第1页
    精品试题冀教版八年级数学下册第二十章函数定向测试试卷(含答案详解)第2页
    精品试题冀教版八年级数学下册第二十章函数定向测试试卷(含答案详解)第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十章 函数综合与测试同步训练题

    展开

    这是一份初中数学冀教版八年级下册第二十章 函数综合与测试同步训练题,共22页。试卷主要包含了函数中,自变量x的取值范围是,在函数中,自变量x的取值范围是等内容,欢迎下载使用。
    冀教版八年级数学下册第二十章函数定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图1,在矩形ABCD中,ABBCACBD交于点O.点E为线段AC上的一个动点,连接DEBE,过EEFBDF.设AEx,图1中某条线段的长为y,若表示yx的函数关系的图象大致如图2所示,则这条线段可能是图1中的(       ).A.线段EF B.线段DE C.线段CE D.线段BE2、汽车的“燃油效率”是指汽车每消耗1升汽油最多可行驶的公里数.如图描述了两辆汽车在不同速度下的燃油效率情况.根据图中信息,下面4个推断中,合理的是(       A.消耗1升汽油,车最多可行驶5千米B.车以40千米小时的速度行驶1小时,最少消耗4升汽油C.对于车而言,行驶速度越快越省油D.某城市机动车最高限速80千米小时,相同条件下,在该市驾驶车比驾驶车更省油3、某油箱容量为60升的汽车,加满汽油后行驶了100千米时,邮箱中的汽油大约消耗了,如果加满后汽车的行驶路程为x千米,邮箱中剩余油量为y升,则yx之间的函数关系式是(       A.y=0.12x B.y=60+0.12x C.y=-60+0.12x D.y=60-0.12x4、下列四个图象中,能表示yx的函数的是(       A. B.C. D.5、下列图象表示的两个变量间的关系中,y不是x的函数的是(   )A. B.C.  D.6、函数中,自变量x的取值范围是(   )A. B. C. D.7、下列函数中,自变量的取值范围选取错误的是( )A.y=2x2中,x取全体实数 B.y=中,xx≠-1的实数C.y=中,xx≥2的实数 D.y=中,xx≥-3的实数8、初三学生小博匀速骑车从家前往体有馆打羽毛球.已知小博家离体育馆路程为5000米,小博出发5分钟后,爸爸发现小博的电话手表落在家里,无法联系,于是爸爸匀速骑车去追赶小博,当爸爸追赶上小博把手表交给小博后,爸爸立即返回家,小博以原速继续向体有馆前行(假定爸爸给手表和掉头的时间忽略不计),在整个骑行过程中,小博和爸爸均保持各自的速度匀速骑行,小博、爸爸两人之向的距离y(米)与小博出发的时间x(分钟)之间的关系如图所示,对于以下说法错误的是(       ).A.小博的迹度为180米/分B.爸爸的速度为270米/分C.点C的坐标是D.当爸爸出发的时间为分钟或分钟时,爸爸与小博相距800米9、在函数中,自变量x的取值范围是(       A. B. C. D.10、函数的自变量x的取值范围是(             A.x>5 B.x<5 C.x≠5 D.x≥-5第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、判断一个变量是否是另一个变量的函数,关键是看当一个变量确定时,另一个变量有_________确定的值与它对应.2、下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b与下降高度d的关系:d5080100150b25405075写出用d表示b的关系式:_______.3、函数y=中,自变量x的取值范围是____________4、如图1,点P从△ABC的顶点A出发,沿ABC匀速运动,到点C停止运动.点P运动时,线段AP的长度y与运动时间x的函数关系如图2所示,其中D为曲线部分的最低点,则△ABC的面积是___.5、在一条笔直的公路上依次有ABC三地,AB两地相距210千米.甲、乙两车分别从AB两地同时出发匀速前往C地,乙到达C地后先休息30分钟,再以原速的返回到B地,甲到达C地立即停止.当乙返回到B地1.5小时后,甲到达C地.甲、乙两车之间的距离y(千米)与甲车出发的时间x(小时)之间的函数关系如图所示,则下列五个说法:①a=210;②乙车从C地返回B地的速度为90km/h;③甲出发8小时后到达C地;④AC两地的距离为540km;⑤甲车出发小时后与乙车相遇.其中正确的有_____.三、解答题(5小题,每小题10分,共计50分)1、指出下列问题中的变量和常量:(1)某市的自来水价为4元/t.现要抽取若干户居民调查水费支出情况,记某户月用水量为吨,月应交水费为y元.(2)某地手机通话费为0.2元/.李明在手机话费卡中存入30元,记此后他的手机通话时间为,话费卡中的余额为w元.(3)水中涟漪(圆形水波)不断扩大,记它的半径为r,周长为C,圆周率(圆周长与直径之比)为(4)把10本书随意放入两个抽昼(每个抽屉内都放),第一个抽屉放入x本,第二个抽屉放入y本.2、如图是小明散步过程中所走的路程s(单位:m)与步行时间t(单位:)的函数图象.(1)小明在散步过程中停留了多少时间?(2)求小明散步过程步行的平均速度.(3)在哪一时间段,小明是匀速步行的?在这一时间段,他步行的速度是多少?3、小明和小华是姐弟俩,某日早晨,小明7:40先从家出发去学校,走了一段后,在途中广场看到志愿者们在向过往行人讲解卫生防疫常识,小明想起自己在学校学到的卫生防疫常识,于是停下来加入了志愿者队伍,后来发现上课时间快到了,就开始跑步上学,恰好在8:00赶到学校;小华离家后沿着与小明同一条道路前往学校,速度一直保持不变,也恰好在8:00赶到学校,他们从家到学校已走的路程(米)和所用时间(分钟)的关系图如图所示,请结合图中信息解答下列问题:(1)小明家和学校的距离是         米;小明在广场向行人讲解卫生防疫常识所用的时间是         分钟;(2)分别求小华的速度和小明从广场跑去学校的速度;(3)求小华在广场看到小明时是几点几分?(4)如果小明在广场进行卫生防疫常识讲解后,继续以之前的速度去往学校,假设讲解1次卫生防疫常识需要1分钟,在保证不迟到(不超过8:00)的情况下,通过计算求小明最多可以讲解几次?(结果保留整数)4、假设圆锥的高是6cm,当圆锥的底面半径由小到大变化时,圆锥的体积随着底面半径而变化,(圆锥的体积公式:Vπr2h,其中r表示底面半径,h表示圆锥的高)(1)在这个变化过程中,自变量是______________,因变量是_____________.(2)如果圆锥底面半径为r(cm),那么圆锥的体积V(cm3)与r(cm)的关系式为_________.(3)当r由1cm变化到10cm时,V由__________cm3变化到__________cm3.5、某商店一种玩具定价为15元,商店为了促销于是打出广告:凡购买6个以上者则超过6个的部分一律打八折.(1)如果购买款用y(元)表示,购买数量用x(个)表示,求出yx之间的函数关系式;(2)当x=4、x=8时,购买款分别是多少元? -参考答案-一、单选题1、B【解析】【分析】根据各个选项中假设的线段,可以分别由图象得到相应的yx的变化的趋势,从而可以判断哪个选项是正确的.【详解】解:A、由图1可知,若线段EFy,则yx的增大先减小后增大,而由大变小的距离等于由小变大的距离,故此选项不符合题意;B、由图1可知,若线段DEy,则yx的增大先减小再增大,而由大变小的距离大于由小变大的距离,在点A的距离是DA,在点C时的距离是DCDADC,故此选项符合题意;C、由图1可知,若线段CEy,则yx的增大越来越小,故此选项不符合题意;D、由图1可知,若线段BEy,则yx的增大先减小再增大,而由由大变小的距离小于由小变大的距离,在点A的距离是BA,在点C时的距离是BCBABC,故此选项不符合题意;故选B.【点睛】本题考查动点问题的函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.2、B【解析】【分析】根据题意和函数图象可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:A、由图象可知,当车速度超过时,燃油效率大于,所以当速度超过时,消耗1升汽油,车行驶距离大于5千米,故此项不合理,不符合题意;B、车以40千米小时的速度行驶1小时,路程为,最少消耗4升汽油,此项合理,符合题意;C、对于车而言,行驶速度在时,越快越省油,故此项不合理,不符合题意;D、某城市机动车最高限速80千米小时,相同条件下,在该市驾驶车比驾驶车燃油效率更高,所以更省油,故此项不合理,不符合题意.故选:B.【点睛】本题考查函数的图象,解题的关键是明确题意,利用数形结合的思想解答.3、D【解析】【分析】先求出1千米的耗油量,再求行驶x千米的耗油量,最后求油箱中剩余的油量即可.【详解】解:∵每千米的耗油量为:60×÷100=0.12(升/千米),y=60-0.12x故选:D.【点睛】本题考查了函数关系式,求出1千米的耗油量是解题的关键.4、A【解析】【分析】根据“在一个变化过程中,如果有两个变量xy,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,我们就说x是自变量,yx的函数”,由此可排除选项.【详解】解:选项A符合函数的概念,而B、C、D都不符合“对于x的每一个确定的值,y都有唯一确定的值与其对应”,故选A.【点睛】本题主要考查函数的定义,熟练掌握函数的定义是解题的关键.5、D【解析】【分析】根据一个x值只能对应一个y值判断即可;【详解】根据一个x值只能对应一个y值可知D不是y不是x的函数;【点睛】本题主要考查了函数图像的判断,准确分析判断是解题的关键.6、B【解析】【分析】根据分母不为零,函数有意义,可得答案.【详解】解:函数有意义,得解得故选:B.【点睛】本题考查了函数自变量的取值范围,解题的关键是掌握分母不为零.7、D【解析】【分析】根据分式的分母不能为0、二次根式的被开方数的非负性即可得.【详解】解:A、中,取全体实数,此项正确;B、,即中,的实数,此项正确;C、中,的实数,此项正确;D、,且中,的实数,此项错误;故选:D.【点睛】本题考查了函数自变量、分式和二次根式,熟练掌握分式和二次根式有意义的条件是解题关键.8、C【解析】【分析】根据小博出发5分钟后行驶900米,得出小博的迹度为=180米/分,可判断A;爸爸匀速骑车去追赶小博,15分钟时追上小博,设爸爸匀速骑车速度为x米/分,根据两者行驶路程相等列方程15×180=10x,得出x=270米/分,可判断B;点C表示爸爸返回家中两者间的距离,爸爸追上小博用10分钟,(假定爸爸给手表和掉头的时间忽略不计),返回时仍然用10分钟到家,此时小博行驶15+10=25分钟,行驶距离为25×180=4500米,可判断C;设爸爸出发时间为t分钟时,两者之间距离为800米,根据追及与相背而行问题列方程(5+t)180-270t=800或(180+270)×(t-10)=800,解方程可判断D.【详解】解:∵小博出发5分钟后行驶900米,∴小博的迹度为=180米/分,故选项A正确;       爸爸匀速骑车去追赶小博,15分钟时追上小博,设爸爸匀速骑车速度为x米/分,15×180=10x,解得:x=270米/分,∴故选项B正确;C表示爸爸返回家中两者间的距离,爸爸追上小博用10分钟,(假定爸爸给手表和掉头的时间忽略不计),返回时仍然用10分钟到家,此时小博行驶15+10=25分钟,行驶距离为25×180=4500米,∴点C(25,4500),故选项C不正确,设爸爸出发时间为t分钟时,两者之间距离为800米,(5+t)180-270t=800或(180+270)×(t-10)=800,解得:分钟或分钟,当爸爸出发的时间为分钟或分钟时,爸爸与小博相距800米,故选项D正确.故选C.【点睛】本题考查从函数图像获取信息和处理,掌握从函数图像获取信息和处理,关键掌握图像中的横纵轴于折叠表示的意义.9、C【解析】【分析】由题意知,求解即可.【详解】解:由题意知故选C.【点睛】本题考查了分式有意义的条件与解一元一次不等式.解题的关键在于确定分式有意义的条件.10、D【解析】【分析】根据二次根式有意义的条件即可得出答案.【详解】解:∵函数解得:故选:D.【点睛】本题考查了二次根式有意义的条件,熟知根号下为非负数是解题的关键.二、填空题1、唯一【解析】2、【解析】【分析】根据表格可得当下降高度为50时,弹跳高度为25,当下降高度为80时,弹跳高度为40,由此可得前后弹跳高度差为15,高度差为30,进而问题可求解.【详解】解:由表格可任取两个值可得高度差与弹跳差的比值为:故答案为【点睛】本题主要考查函数关系,解题的关键是根据表格找准等量关系即可.3、【解析】【分析】根据二次根式有意义的条件即可求得自变量x的取值范围【详解】解:故答案为:【点睛】本题考查了函数解析式,二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.4、48【解析】【分析】根据图象可知点PAB上运动时,此时AP不断增大,而从BC运动时,AP先变小后变大,从而可求出BCBC上的高.【详解】解:根据图象可知,点PAB上运动时,此时AP不断增大,由图象可知:点PAB运动时,AP的最大值为10,即AB=10,PBC运动时,AP的最小值为8,BC边上的高为8,∴当APBCAP=8,此时,由勾股定理可知:BP=6,由于图象的曲线部分是轴对称图形,PC=6,BC=12,∴△ABC的面积为:×8×12=48,故答案为48.【点睛】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BCAB的长度.5、①⑤【解析】【分析】根据AB两地相距210千米得出a的值;根据乙到达C地后先休息30分钟时再以原速的返回到B地,甲到达C地立即停止.当乙返回到B地1.5小时后,甲到达C地.可求出甲车的速度;从而得出乙车的速度;求出AC两地的距离可得甲到达C地的时间;根据x=3.5时甲、乙两车的距离以及速度可判断④.【详解】解:∵AB两地相距210千米.a210正确;由图象得:乙到达C地后先休息30分钟,3.5小时时,甲距C360千米,再以原速的返回到B地,甲到达C地立即停止.可知回时所用的时间为:小时,当乙返回到B地1.5小时后,甲到达C地.可知甲在3.5小时时开始运动,经过小时到达C地,故甲车的速度为:3小时时,两车的距离为:,设乙车的速度为,则解得:∴乙车从C地返回B地的速度为:120×80(千米/小时),错误;BC两地的距离为:120×3360(千米),AC两地的距离为:360+210570(千米),错误;570÷60(小时),即甲出发小时后到达C地,错误;x3.5时,甲、乙两车之间的距离是360千米,360÷(80+60)=(小时),即再行驶小时两车相遇,+3.5(小时),即甲车出发小时后与乙车相遇.正确.∴其中正确的有①⑤故答案为:①⑤【点睛】本题考查了函数图象信息读取,准确读出图象含义是解题的关键.三、解答题1、(1)变量xy;常量4.(2)变量tw;常量0.2,30.(3)变量rC;常量.(4)变量xy;常量10.【解析】【分析】根据常量与变量的定义求解即可.【详解】解:(1)由题意可知,变量为xy,常量为4;(2)由题意可知,变量为tw,常量为0.2,30;(3)由题意可知,变量为rC,常量为(4)由题意可知,变量为xy,常量为10.【点睛】本题考查常量与变量的定义,常量是指在变化过程中不随时间变化的量;变量是指在变化过程中随着时间变化的量.2、(1);(2);(3)第25~50分,速度为【解析】【分析】(1)根据函数图象中的信息,利用数形结合列式求解即可;(2)根据函数图象中的信息,利用数形结合列式求解即可;(3)根据函数图象中的信息,利用数形结合列式求解即可.【详解】(1)小明在散步过程中停留了25-20=(2)小明散步过程步行的平均速度为2000m÷50=(3)由图可得小明在25~50分是匀速步行的;速度为=【点睛】本题考查了函数图像的应用,正确的识别图象、数形结合是解题的关键.3、(1)1280,6;(2)小华的速度为米/分钟,小明从广场跑去学校的速度为120米/分钟;(3)7:51;(4)在保证不迟到的情况下,小明最多可以讲解1次【解析】【分析】(1)根据函数图象,找出小明家和学校的距离是1280米,计算出小明在广场向行人讲解卫生防疫常识所用的时间即可;(2)根据速度=路程÷时间,分别求小华的速度和小明从广场跑去学校的速度;(3)根据函数图象可得当小华离家路程,根据速度=路程÷时间,算出用的时间,加上出分时间,由此解答即可;(4)根据函数图象可得,小明之前的速度,讲解时间,由此推断即可.【详解】(1)解:由图象可知,小明家和学校的距离是1280米;小明在广场向行人讲解卫生防疫常识所用的时间是: (分钟);故答案为:1280;6;(2)解:小华的速度为:(米/分钟),小明从广场跑去学校的速度为:(米/分钟);(3)解:(分钟),(分钟),答:小华在广场看到小明时是7:51;(4)解:(分钟),(分钟),因为所以,在保证不迟到的情况下,小明最多可以讲解1次.【点睛】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.4、(1)圆锥的底面半径,圆锥的体积;(2)V=2πr2;(3)2π;200π.【解析】【分析】(1)圆锥的体积随着底面半径的变化而变化,于是圆锥的底面半径为自变量,圆锥的体积为因变量;(2)由圆锥的体积公式:Vπ•r2hh=6,可得函数关系式;(3)根据函数关系式,求出当r=1cmr=10cm时的体积V即可.【详解】解:(1)由于圆锥的体积随之底面半径的变化而变化,因此圆锥的底面半径为自变量,圆锥的体积为因变量,故答案为:圆锥的底面半径,圆锥的体积;(2)当h=6时,由圆锥的体积公式:Vπ•r2h可得,由圆锥的体积公式:Vπ•r2h可得,V=2πr2故答案为:V=2πr2(3)当r=1cm时,V=2π(cm3),r=10cm时,V=2π×102=200π(cm3),故答案为:2π,200π.【点睛】本题考查变量之间的关系,函数关系式,理解函数的意义,掌握圆锥的体积的计算方法是正确解答的前提.5、(1)y;(2)60元,114元【解析】【分析】(1)根据题意分段列出函数表达式即可;(2)根据(1)的结论,将x=4、x=8代入函数解析式即可求得答案.【详解】解:(1)由题意可得,当0<x≤6时,y=15xx>6时,y=15×6+(x﹣6)×15×0.8=12x+18,由上可得,yx的函数关系式为:y(2)当x=4时,y=15×4=60,x=8时,y=12×8+18=114,答:当x=4,x=8时,货款分别为60元,114元.【点睛】本题考查了列函数解析式,已知自变量的值求函数值,根据题意列出函数解析式是解题的关键. 

    相关试卷

    数学八年级下册第二十章 函数综合与测试习题:

    这是一份数学八年级下册第二十章 函数综合与测试习题,共23页。

    初中冀教版第二十章 函数综合与测试同步达标检测题:

    这是一份初中冀教版第二十章 函数综合与测试同步达标检测题,共25页。试卷主要包含了函数中,自变量x的取值范围是,在函数中,自变量的取值范围是等内容,欢迎下载使用。

    初中数学第二十章 函数综合与测试当堂检测题:

    这是一份初中数学第二十章 函数综合与测试当堂检测题,共19页。试卷主要包含了下列图象表示y是x的函数的是,在函数中,自变量x的取值范围是等内容,欢迎下载使用。

    英语朗读宝
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map