![难点解析冀教版八年级数学下册第二十章函数专题练习试卷(精选含详解)01](http://www.enxinlong.com/img-preview/2/3/12765182/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析冀教版八年级数学下册第二十章函数专题练习试卷(精选含详解)02](http://www.enxinlong.com/img-preview/2/3/12765182/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析冀教版八年级数学下册第二十章函数专题练习试卷(精选含详解)03](http://www.enxinlong.com/img-preview/2/3/12765182/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版八年级下册第二十章 函数综合与测试达标测试
展开冀教版八年级数学下册第二十章函数专题练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、函数的自变量x的取值范围是( )
A.x>5 B.x<5 C.x≠5 D.x≥-5
2、下图中表示y是x函数的图象是( )
A. B.
C. D.
3、如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在第4小时到6小时的速度是25千米/时;④汽车出发后9小时返回原地.其中正确的说法共有( )
A.1个 B.2个 C.3个 D.4个
4、在某火车站托运物品时,不超过3kg的物品需付1.5元,以后每增加1kg(不足1kg按1kg计)需增加托运费0.5元,则下列图象能表示出托运费y与物品重量x之间的函数关系式的是( )
A. B.
C. D.
5、用m元钱在网上书店恰好可购买100本书,但是每本书需另加邮寄费6角,购买n本书共需费用y元,则可列出关系式( )
A.y=n(+0.6) B.y=n()+0.6
C.y=n(+0.6) D.y=n()+0.6
6、如图所示,下列各曲线中表示是的函数的有()
A.1个 B.2个 C.3个 D.4个
7、如图,已知在ABC中,AB=AC,点D沿BC自B向C运动,作BE⊥AD于E,CF⊥AD于F,则BE+CF的值y与BD的长x之间的函数图象大致是( )
A. B.
C. D.
8、函数y=中,自变量x的取值范围是( )
A.x>﹣3且x≠0 B.x>﹣3 C.x≥﹣3 D.x≠﹣3
9、为了让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,打开进水口注水时,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示,下列说法错误的是:( )
A.该游泳池内开始注水时已经蓄水100m3
B.每小时可注水190m3
C.注水2小时,游泳池的蓄水量为380m3
D.注水2小时,还需注水100m3,可将游泳池注满
10、当时,函数的值是( )
A. B. C.2 D.1
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、李师傅到单位附近的加油站加油,如图是所用的加油机上的数据显示牌,则其中的常量是_______.
2、在函数中,自变量的取值范围是___________.
3、如图1,正方形的边上有一定点,连接.动点从正方形的顶点出发,沿以1cm/s的速度匀速运动到终点.图2是点运动时,的面积y(cm2)随时间x(s)变化的全过程图象,则的长度为________cm.
4、如图,一个矩形(向左右方向)推拉窗,窗高1.55米,则活动窗扇的通风面积S(平方米)与拉开长度b(米)的关系式是__.
5、从中宁到银川的距离为130千米,一辆小轿车车以平均每小时80千米的速度从中宁出发到银川,则小轿车距银川的距离y(千米)与行驶时间x(时)的函数表达式为______.
三、解答题(5小题,每小题10分,共计50分)
1、求出下列函数中自变量的取值范围
(1)
(2)
(3)
2、滑车以1.5米/分钟的速度匀速地从轨道的一端滑向另一端,已知轨道的长为6米,滑车滑行分钟时离终点的路程为米.
(1)求关于的函数关系式,并写出自变量的取值范围;
(2)滑行多长时间时,滑车离终点1米?
3、有这样一个问题:探究函数y=的图象与性质.小东根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小东的探究过程,请补充完整:
(1)函数y=的自变量x的取值范围是 ;
(2)列表:
x | … | ﹣5 | ﹣4 | ﹣3 | ﹣2 | ﹣1 | ﹣0.5 | 0 | 0.2 | 1.8 | 2 | 2.5 | 3 | 4 | n | 6 | 7 | … |
y | … | ﹣1 | m | ﹣1.5 | ﹣2 | ﹣3 | ﹣4 | ﹣6 | ﹣7.5 | 7.5 | 6 | 4 | 3 | 2 | 1.5 | 1.2 | 1 | … |
求出表中m的值为 ,n的值为 .
描点:根据表中各组对应值(x,y),在平面直角坐标系中描出了各点;
连线:用平滑的曲线顺次连接各点,画出了部分图象,请你把图象补充完整;
(3)观察发现:结合函数的图象,写出该函数的两条性质:① ;② .
4、为了提高天然气使用效率,保障居民的用气需求,某市推进阶梯式气价改革,若一户居民的年用气量不超过300m3,价格为2.5元/m3,若年用气量超过300m3,超出部分的价格为3 元/m3,
(1)根据题意,填写表:
一户居民的年用气量 | 150 | 250 | 350 | … |
付款金额/元 |
| 625 |
| … |
(2)设一户居民的年用气量为xm3,付款金额为y元,求y关于x的解析式,并写出自变量的取值范围;
(3)若某户居民一年使用天然气所付的金额为870元,求该户居民的年用气量.
5、(1)画出函数的图象.
(2)设是x轴上的一个动点,它与x轴上表示的点的距离为y.求y关于x的函数解析式,并画出这个函数的图象.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据二次根式有意义的条件即可得出答案.
【详解】
解:∵函数,
∴,
解得:,
故选:D.
【点睛】
本题考查了二次根式有意义的条件,熟知根号下为非负数是解题的关键.
2、C
【解析】
【分析】
函数就是在一个变化过程中有两个变量x,y,当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.注意“y有唯一的值与其对应”对图象的影响.
【详解】
解:根据函数的定义,表示y是x函数的图象是C.
故选:C.
【点睛】
理解函数的定义,是解决本题的关键.
3、C
【解析】
【分析】
根据函数图像上的特殊点以及函数图像自身的实际意义进行判断即可.
【详解】
解:由图象可知,汽车走到距离出发点140千米的地方后又返回出发点,所以汽车共行驶了280千米,故①错误;
从3时开始到4时结束,时间在增多,而路程没有变化,说明此时在停留,停留了4-3=1小时,故②正确;
汽车在第4小时到6小时的速度是=千米/时,故③正确;
由图象可知,当t=9时,s=0,汽车出发后9小时返回原地,故④正确.
∴正确的说法有:②③④,共有3个.
故选:C.
【点睛】
此题考查了函数图像问题,解题的关键是正确分析题目中信息进行求解.
4、D
【解析】
【分析】
根据题意分析出 托运费y与物品重量x之间的函数关系,画出图像即可.
【详解】
解:由题意可得,
当时,,
∵物品重量每增加1kg(不足1kg按1kg计)需增加托运费0.5元,
∴托运费y与物品重量x之间的函数图像为:
故选:D.
【点睛】
此题考查了函数的图像,解题的关键是根据题意正确分析出托运费y与物品重量x之间的函数关系.
5、A
【解析】
【分析】
由题意可得每本书的价格为元,再根据每本书需另加邮寄费6角即可得出答案;
【详解】
解:因为用m元钱在网上书店恰好可购买100本书,
所以每本书的价格为元,
又因为每本书需另加邮寄费6角,
所以购买n本书共需费用y=n(+0.6)元;
故选:A.
【点睛】
本题考查了列代数式和用关系式表示变量之间的关系,正确理解题意、得到每本书的价格是关键.
6、C
【解析】
【分析】
由题意依据函数的定义对各个函数图形进行分析判断即可得出答案.
【详解】
解:由对于的每一个确定的值,都有唯一确定的值与其对应可知,
①、②、③表示是的函数,④不构成函数关系,共有3个.
故选:C.
【点睛】
本题考查函数的识别,注意掌握在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数.
7、D
【解析】
【分析】
根据题意过点A作AD′⊥BC于点D′,由题可知,当点D从点B运动到点C,即x从小变大时,AD也是由大变小再变大,而△ABC的面积不变,又S=AD,即y是由小变大再变小,结合选项可得结论.
【详解】
解:过点A作AD′⊥BC于点D′,如图,
由题可知,当点D从点B运动到点C,即x从小变大中,AD也是由大变小再变大,
而△ABC的面积不变,又S=AD,即y是由小变大再变小,
结合选项可知,D选项是正确的;
故选:D.
【点睛】
本题主要考查动点问题的函数图象,题中没有给任何的数据,需要通过变化趋势进行判断.
8、B
【解析】
【分析】
根据二次根式和分式有意义的条件:被开方数大于等于0,分母不为0列式计算即可.
【详解】
解:∵函数y=,
∴,解得:x>﹣3.
故选:B.
【点睛】
本题考查函数基本知识,解题的关键是掌握二次根式和分式有意义的条件.
9、B
【解析】
【分析】
根据图象中的数据逐项判断即可解答.
【详解】
解:A、由图象可知,当t=0时,y=100,即该游泳池内开始注水时已经蓄水100m3,正确,故选项A不符合题意;
B、由(380-100)÷2=140(m3),即每小时可注水140m3,故选项B错误,符合题意;
C、由图可知,注水2小时,游泳池的蓄水量为380m3,正确,故选项C不符合题意;
D、由图象可知,480-380=100(m3),即注水2小时,还需注水100m3,可将游泳池注满,正确,不符合题意,
故选:B.
【点睛】
本题考查一次函数的应用,能从图象中获取有效信息是解答的关键.
10、D
【解析】
【分析】
把代入计算即可.
【详解】
解:把代入,得
,
故选D.
【点睛】
本题考查的是函数值的求法,函数值是指自变量在取值范围内取某个值时,函数与之对应唯一确定的值.
二、填空题
1、单价
【解析】
【分析】
根据常量与变量的定义即可判断.
【详解】
解:常量是固定不变的量,变量是变化的量,
单价6.48是不变的量,而金额是随着数量的变化而变化,
∴常量是:单价.
故答案为:单价.
【点睛】
本题考查常量与变量,解题的关键是正确理解常量与变量,本题属于基础题型.
2、
【解析】
【分析】
根据算术平方根的非负性即可完成.
【详解】
由题意,
∴
故答案为:.
【点睛】
本题考查了求函数自变量的取值范围,关键是掌握算术平方根的非负性.
3、3
【解析】
【分析】
当点P在点D时,设正方形的边长为acm,然后根据函数图象可得a的值,当点P在点C时,进而根据函数图象及三角形面积公式可进行求解.
【详解】
解:由题意得:
当点P在点D时,设正方形的边长为acm,则有,解得:;
当点P在点C时,则有,解得:;
故答案为3.
【点睛】
本题主要考查动点函数图象问题,解决问题的关键是弄清楚不同时间段,图象与图形的对应关系.
4、S=1.55b
【解析】
【分析】
通风面积是拉开长度与窗高的乘积.
【详解】
解:活动窗扇的通风面积S(米2)与拉开长度b(米)的关系是S=1.55b.
故答案为:S=1.55b.
【点睛】
本题考查了列函数关系式的知识,解决问题的关键是读懂题意,找到所求的量的等量关系.
5、y=130−80x##y=-80x+130
【解析】
【分析】
根据题意列出函数关系式.
【详解】
解:小轿车距银川的距离y(千米)与行驶时间x(时)的函数表达式为:y=130−80x,
故答案为:y=130−80x.
【点睛】
本题考查的是函数关系式的确定,根据题意正确列出函数关系式是解题的关键.
三、解答题
1、(1)且;(2)且;(3)
【解析】
【分析】
(1)根据分式有意义的条件和零指数幂底数不为0进行求解即可;
(2)根据分式有意义的条件和二次根式有意义的条件进行求解即可;
(3)根据二次根式有意义的条件进行求解即可.
【详解】
解:(1)要使有意义,需,解得且;
(2)要使有意义,需,解得且;
(3)要使有意义,需,解得.
【点睛】
本题主要考查了分式有意义的条件,二次根式有意义的条件,零指数幂底数不为0,解题的关键在于能够熟练掌握相关知识进行求解.
2、(1);(2)
【解析】
【分析】
(1)先求得的范围,根据题意,列出关于的函数关系式,
(2)根据(1)的关系式,将代入求解即可.
【详解】
解:(1)
由题意,得;
关于的函数关系式为
(2)当时,,
解得,
答:滑行分钟时,滑车离终点1米.
【点睛】
本题考查了变量与关系式,理解题意,列出关系式是解题的关键.
3、(1)x≠1;(2)2,5,图象见解析;(3)①图象是中心对称图形,对称中心的坐标是(1,0);②当x>1时,y随x的增大而减小(答案不唯一).
【解析】
【分析】
(1)根据分母不为0即可得出关于x的不等式,解之即可求解;
(2)将x=4代入函数解析式即可求出m的值,将y=1.5代入函数解析式即可求出n的值;然后用平滑曲线连线即可画出函数图象;
(3)观察函数图象,从增减性及对称性得出结论即可.
【详解】
(1)由题意得:x-1≠0,
解得:x≠1,
故答案为:x≠1;
(2)当x=4时,m=,
当y=1.5时,则1.5=,解得n=5,
描点、连线画出函数图象如图,
故答案为:2,5;
(3)观察函数图象发现:
①该图象是中心对称图形,对称中心的坐标是(1,0),
②当x>1时,y随x的增大而减小.
答案不唯一.
【点睛】
本题考查了反比例函数图象上点的坐标特征,函数自变量取值范围及反比例函数的性质,解题关键是理解题意,学会利用图象法解决问题.
4、(1)375,900;(2)y=;(3)340m3.
【解析】
【分析】
(1)根据两种收费标准进行求解即可;
(2)分两种情况:①当x≤300时,②当x>300时,根据题目所给收费标准求解即可;
(3)先根据,得到,然后把y=870代入y=3x-150中进行求解即可.
【详解】
解:(1)由题意得:当一户居民的年用气量为的时候,付款金额为元,
当一户居民的年用气量为的时候,付款金额为元,
故答案为:375,900;
(2)分两种情况:
①当x≤300时,y=2.5x;
②当x>300时,y=2.5×300+3×(x-300)=3x-150.
综上所述,y关于x的解析式为y=;
(3)∵,
∴
∴将y=870代入y=3x-150,
得870=3x-150,解得x=340.
∴该户居民的年用气量为340m3.
【点睛】
本题主要考查了根据表格求函数关系式,解题的关键在于能够准确读懂题意.
5、(1)见解析;(2),见解析
【解析】
【分析】
(1)先列表,然后画出函数图像即可;
(2)先根据题意求出函数解析式,然后列表,最后画出函数图像即可
【详解】
解:(1)由题意得:y=|x-1|,即y;
x | 1 | 2 |
y=x-1 | 0 | 1 |
x | 0 | 1 |
y=-x+1 | 1 | 0 |
函数图象如图:
(2)由题意得:y=|x-(-3)|=|x+3|,即y;
x | -3 | -2 |
y=x+3 | 0 | 1 |
x | -4 | -3 |
y=-x-3 | 1 | 0 |
函数图象如图:
【点睛】
本题主要考查函数及其图像,掌握函数图象的画法是解题的关键.
初中数学冀教版八年级下册第二十章 函数综合与测试课后作业题: 这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课后作业题,共23页。
2020-2021学年第二十章 函数综合与测试习题: 这是一份2020-2021学年第二十章 函数综合与测试习题,共22页。
初中冀教版第二十章 函数综合与测试课后作业题: 这是一份初中冀教版第二十章 函数综合与测试课后作业题,共22页。试卷主要包含了如图,点A的坐标为等内容,欢迎下载使用。