初中数学冀教版八年级下册第二十一章 一次函数综合与测试精练
展开
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试精练,共26页。
八年级数学下册第二十一章一次函数定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一辆货车从甲地到乙地,一辆轿车从乙地到甲地,两车沿同一条笔直的公路分别从甲、乙两地同时出发,匀速行驶.两车离乙地的距离(单位:)和两车行驶时间(单位:)之间的关系如图所示.下列说法错误的是( ).A.两车出发时相遇 B.甲、乙两地之间的距离是C.货车的速度是 D.时,两车之间的距离是2、已知一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点(0,-1),且y的值随x值的增大而增大,则这个一次函数的表达式可能是( )A.y=﹣2x+1 B.y=2x+1 C.y=﹣2x﹣1 D.y=2x﹣13、直线不经过点( )A.(0,0) B.(﹣2,3) C.(3,﹣2) D.(﹣3,2)4、如图,在平面直角坐标系中,线段AB的端点为A(﹣2,1),B(1,2),若直线y=kx﹣1与线段AB有交点,则k的值不能是( ).A.-2 B.2C.4 D.﹣45、已知正比例函数y=3x的图象上有两点M(x1,y1)、N(x2,y2),如果x1>x2,那么y1与y2的大小关系是( )A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定6、已知一次函数y=mnx与y=mx+n(m,n为常数,且mn≠0),则它们在同一平面直角坐标系内的图象可能为( )A. B.C. D.7、在平面直角坐标系中,若函数的图象经过第一、二、三象限,则的取值( )A.小于0 B.等于0 C.大于0 D.非负数8、如图,一次函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4,则下列说法正确的个数是( )①对于函数y=ax+b来说,y随x的增大而减小;②函数y=ax+d不经过第一象限;③方程ax+b=cx+d的解是x=4;④ d-b=4(a-c).A.1 B.2 C.3 D.49、无论m为何实数.直线与的交点不可能在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限10、下列语句是真命题的是( ).A.内错角相等B.若,则C.直角三角形中,两锐角和的函数关系是一次函数D.在中,,那么为直角三角形第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若一次函数的图象如图所示,则关于的一元一次方程的解是______.2、写出一个过点的一次函数解析式__.3、如图1是甲、乙两个圆柱形容器的轴截面示意图,乙容器中有一个圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙容器底面上),现将甲容器中的水匀速注入乙容器,甲、乙两个容器中水的深度与注水时间(分钟)之间的关系如图2所示,若乙容器中铁块的体积是,则甲容器的底面积是______.4、已知:直线与直线的图象交点如图所示,则方程组的解为______.5、如图,正比例函数 y=kx(k≠0)的图像经过点 A(2,4),AB⊥x 轴于点 B,将△ABO 绕点 A逆时针旋转 90°得到△ADC,则直线 AC 的函数表达式为_____.三、解答题(5小题,每小题10分,共计50分)1、如图,直线l:与y轴交于点G,直线l上有一动点P,过点P作y轴的平行线PE,过点G作x轴的平行线GE,它们相交于点E.将△PGE沿直线l翻折得到△PGE′,点E的对应点为E′.(1)如图1,请利用无刻度的直尺和圆规在图1中作出点E的对应点E′;(2)如图2,当点E的对应点E′落在x轴上时,求点P的坐标;(3)如图3,直线l上有A,B两点,坐标分别为(-2,-6),(4,6),当点P从点A运动到点B的过程中,点E′也随之运动,请直接写出点E′的运动路径长为____________.2、为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?3、已知直线与x轴交于点,与y轴相交于点,直线与y轴交于点C,与x轴交于点D,连接BD.(1)求直线的解析式;(2)直线上是否存在一点E,使得,若存在求出点E的坐标,若不存在,请说明理由.4、平面直角坐标系中,已知直线l1经过原点与点P(m,2m),直线l2:y=mx+2m﹣3(m≠0).(1)求证:点(﹣2,﹣3)在直线l2上;(2)当m=2时,请判断直线l1与l2是否相交?5、如图1,在平面直角坐标系中,直线分别与轴、轴交于、两点,直线分别与轴、轴交于、两点,点是上一点.(1)求、的值;(2)试判断线段与线段之间的关系,并说明理由;(3)如图2,若点是轴上一点,点是直线上一动点,点是直线上一动点,当是以点为直角顶点的等腰三角形时,请直接写出相应的点、的坐标. -参考答案-一、单选题1、D【解析】【分析】根据函数图象分析,当时,函数图象有交点,即可判断A选项;根据最大距离为360即可判断B选项,根据A选项可得两车的速度进而判断C,根据时间乘以速度求得两车的路程,进而求得两车的距离即可判断D选项.【详解】解:根据函数图象可知,当时,,总路程为360km,所以,轿车的速度为,货车的速度为:故A,B,C正确时,轿车的路程为,货车的路程为,则两车的距离为故D选项不正确故选D【点睛】本题考查了一次函数的应用,从图象上获取信息是解题的关键.2、D【解析】【分析】根据题意和一次函数的性质,可以解答本题.【详解】解:∵一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点(0,-1),且y的值随x值的增大而增大,∴b=-1,k>0,故选:D.【点睛】本题考查了待定系数法求一次函数的解析式,一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.3、B【解析】【分析】将各点代入函数解析式即可得.【详解】解:A、当时,,即经过点,此项不符题意;B、当时,,即不经过点,此项符合题意;C、当时,,即经过点,此项不符题意;D、当时,,即经过点,此项不符题意;故选:B.【点睛】本题考查了正比例函数,熟练掌握正比例函数的图象与性质是解题关键.4、B【解析】【分析】当直线y=kx−1过点A时,求出k的值,当直线y=kx−1过点B时,求出k的值,介于二者之间的值即为使直线y=kx−1与线段AB有交点的x的值.【详解】解:①当直线y=kx−1过点A时,将A(−2,1)代入解析式y=kx−1得,k=−1,②当直线y=kx−1过点B时,将B(1,2)代入解析式y=kx−1得,k=3,∵|k|越大,它的图象离y轴越近,∴当k≥3或k≤-1时,直线y=kx−1与线段AB有交点.故选:B.【点睛】本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线.5、A【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1>x2即可得出结论.【详解】∵正比例函数y=3x中,k=3>0,∴y随x的增大而增大,∵x1>x2,∴y1>y2.故选:A.【点睛】本题考查的是一次函数图象上点的坐标特征,熟练掌握正比例函数的增减性与x的系数的关系是解题的关键.6、D【解析】【分析】根据一次函数的图象与系数的关系,由一次函数图象分析可得m、n的符号,进而可得mn的符号,从而判断的图象是否正确,进而比较可得答案.【详解】A、由一次函数图象可知,,即,与正比例函数的图象可知,矛盾,故此选项错误;B、由一次函数图象可知,,即,与正比例函数的图象可知,矛盾,故此选项错误;C、由一次函数图象可知,,即;正比例函数的图象可知,矛盾,故此选项错误;D、由一次函数图象可知,,即,与正比例函数的图象可知,故此选项正确;故选:D.【点睛】此题主要考查了一次函数图象,注意:一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.7、C【解析】【分析】一次函数过第一、二、三象限,则,根据图象结合性质可得答案.【详解】解:如图,函数的图象经过第一、二、三象限,则函数的图象与轴交于正半轴, 故选C【点睛】本题考查的是一次函数的图象与性质,掌握“一次函数过第一、二、三象限,则”是解本题的关键.8、C【解析】【分析】仔细观察图象:①观察函数图象可以直接得到答案;②观察函数图象可以直接得到答案;③根据函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4可以得到答案;④根据函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4可以得到答案.【详解】解:由图象可得,对于函数y=ax+b来说,y随x的增大而减小故①正确;函数y=ax+d图象经过第一,三,四象限,即不经过第二象限,故②不正确,一次函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4,所以方程ax+b=cx+d的解是x=4;故③正确;∵一次函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4,∴4a+b=4c+d∴d-b=4(a-c),故④正确.综上所述,正确的结论有3个.故选:C.【点睛】本题主要考查了一次函数的图象与性质,利用数形结合是解题的关键.9、C【解析】【分析】根据一次函数的图象与系数的关系即可得出结论.【详解】解:∵一次函数y=-x+4中,k=-1<0,b=4>0,∴函数图象经过一二四象限,∴无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在第三象限.故选:C.【点睛】本题考查的是两条直线相交或平行问题,熟知一次函数的图象与系数的关系是解答此题的关键.10、C【解析】【分析】根据平行线的性质,函数的定义,三角形内角和定理逐一判断即可.【详解】解:A、两直线平行,内错角相等,故原命题是假命题,不符合题意;B、若,则,故原命题是假命题,不符合题意;C、直角三角形中,两锐角和的函数关系是一次函数,故原命题是真命题,符合题意;D、在中,,那么最大角∠C=,故△ABC为锐三角形,故原命题是假命题,不符合题意;故选:C.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题叫定理.熟练掌握平行线的性质,三角形内角和定理是解题的关键.二、填空题1、【解析】【分析】一次函数与关于的一元一次方程的解是一次函数,当时,的值,由图像即可的出本题答案.【详解】解:∵由一次函数的图像可知,当 时,,∴关于的一元一次方程的解就是.故答案是:x=2.【点睛】本题主要考查了一次函数与关于的一元一次方程的解关系的知识,掌握一次函数,当时,的值就是关于的一元一次方程的解,是解答本题的关键.2、(答案不唯一)【解析】【分析】设该一次函数的解析式为,取(或其他值都可以),将点代入求解即可得.【详解】解:设该一次函数的解析式为,取,点在一次函数图象上,.一次函数的解析式为,故答案为:(答案不唯一).【点睛】题目主要考查一次函数解析式的确定,理解题意,熟练掌握待定系数法确定函数解析式是解题关键.3、80【解析】【分析】设甲容器的底面积为,乙容器的底面积为,根据拐点(3,17),得到铁块的高度为17cm,从而得到铁块的底面积为=12(),确定= -3x+15,当x=3时,=6,从而得到6=(25-17),从而得到9=(17-2)(-12),求解即可.【详解】设甲容器的底面积为,乙容器的底面积为,∵拐点(3,17),∴铁块的高度为17cm,∴铁块的底面积为=12(),设=kx+15,把(5,0)代入,得5k+15=0,解得k=-3,∴= -3x+15,当x=3时,=6,∴6=(25-17),即=,∵9=(17-2)(-12),∴=80(),故答案为:80.【点睛】本题考查了一次函数的解析式,圆柱的体积,熟练掌握一次函数解析式的确定,正确读懂函数信息是解题的关键.4、【解析】【分析】根据函数图象与二元一次方程组的关系,求方程组的解,就是求两方程所表示的两一次函数图象交点的坐标,从而得出答案.【详解】解:∵函数y=x-b与函数y=mx+6的交点坐标是(2,3),∴方程组的解为.故答案为.【点睛】本题主要考查了一次函数与二元一次方程组的关系,比较简单,熟悉交点坐标就是方程组的解是解题的关键.5、y=-0.5x+5【解析】【分析】直接把点A(2,4)代入正比例函数y=kx,求出k的值即可;由A(2,4),AB⊥x轴于点B,可得出OB,AB的长,再由△ABO绕点A逆时针旋转90°得到△ADC,由旋转不变性的性质可知DC=OB,AD=AB,故可得出C点坐标,再把C点和A点坐标代入y=ax+b,解出解析式即可.【详解】解:∵正比例函数y=kx(k≠0)经过点A(2,4)∴4=2k,解得:k=2,∴y=2x;∵A(2,4),AB⊥x轴于点B,∴OB=2,AB=4,∵△ABO绕点A逆时针旋转90°得到△ADC,∴DC=OB=2,AD=AB=4∴C(6,2)设直线AC的解析式为y=ax+b,把(2,4)(6,2)代入解析式可得:,解得:,所以解析式为:y=-0.5x+5【点睛】本题考查的是一次函数图象上点的坐标特点及图形旋转的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题1、 (1)见解析(2)(3)6【解析】【分析】(1)作出过点E的l的垂线即可解决;(2)设直线l交x轴于点D,则由直线解析式可求得点D、点G的坐标,从而可得OD的长.由对称性及平行可得,设点P的坐标为(a,2a-2),则可得点E的坐标,由及勾股定理可求得点的坐标;(3)分别过点A、B作y轴的平行线,与过点G的垂直于y轴的直线分别交于点C、M,则点E在线段CM上运动,根据对称性知,点运动路径的长度等于CM的长,故只要求得CM的长即可,由A、B两点的坐标即可求得CM的长.(1)所作出点E的对应点E′如下图所示:(2)设直线l交x轴于点D在y=2x-2中,令y=0,得x=1;令x=0,得y=-2则点D、点G的坐标分别为(1,0)、(0,-2)∴OD=1,OG=2由对称性的性质得:,∵GE∥x轴∴∴∴∴设点P的坐标为(a,2a-2),其中a>0,则可得点E的坐标为(a,-2)∴EG=a∴∴在Rt△中,由勾股定理得:解得:当时,所以点P的坐标为(3)分别过点A、B作y轴的平行线,与过点G的垂直于y轴的直线分别交于点C、M,则点E在线段CM上运动,根据对称性知,点运动路径的长度等于CM的长∵A,B两点的坐标分别为(-2,-6),(4,6)∴CM=4-(-2)=6则点运动路径的长为6故答案为:6【点睛】本题主要考查了一次函数的图象与性质、折叠的性质、尺规作图等知识,一次函数的性质及折叠的性质的应用是本题的关键.2、 (1)今年每套A型一体机的价格为1.2万元,每套B型一体机的价格为1.8万元(2)1800万【解析】【分析】(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,根据题意列出二元一次方程组,解方程组求解即可;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100-m)套,列出一元一次不等式组求得的范围,进而设明年需投入W万元,根据题意列出关于的关系式,根据一次函数的性质求得最小值即可求解.(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,由题意得:,解得:答:今年每套A型一体机的价格为1.2万元,每套B型一体机的价格为1.8万元;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100-m)套,由题意可得:1.8(1100-m)≥1.2(1+25%)m,解得:m≤600, 设明年需投入W万元,W=1.2×(1+25%)m+1.8(1100-m)=-0.3m+1980, ∵-0.3<0,∴W随m的增大而减小,∵m≤600,∴当m=600时,W有最小值-0.3×600+1980=1800,故该市明年至少需投入1800万元才能完成采购计划.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,根据题意列出二元一次方程组、不等式以及一次函数关系式是解题的关键.3、 (1)(2)或【解析】【分析】(1)根据待定系数法求一次函数解析式即可;(2)先求,根据求得,进而根据,进而将的纵坐标代入,即可求得的坐标.(1)直线与x轴交于点,与y轴相交于点,设直线的解析式为则解得直线的解析式为(2)与y轴交于点C,与x轴交于点D,令,则,即令,则,即,,将代入解得将代入解得或【点睛】本题考查了待定系数法求一次函数解析式,求两直线与坐标轴围成的三角形面积,根据一次函数解析式求得坐标轴的交点坐标是解题的关键.4、 (1)见解析(2)直线l1与l2不相交【解析】【分析】(1)将所给点代入直线中,看等式是否成立,再判断该点是否在直线上;(2)求出解析式与比较,发现系数相同,故不可能相交.【详解】(1)把x=﹣2代入y=mx+2m﹣3得,y=﹣2m+2m﹣3=﹣3,∴点(﹣2,﹣3)在直线l2上;(2)∵直线l1经过原点与点P(m,2m),∴直线l1为y=2x,当m=2时,则直线l2:y=2x+1,∵x的系数相同,∴直线l1与l2不相交.【点睛】本题考查平面直角坐标系中的直线解析式求法、点是否在直线上的判断、两直线是否相交,掌握这些是解题关键.5、 (1)2,1(2)垂直且相等,见解析(3)点、的坐标分别为、或、【解析】【分析】(1)分别求出点A,B的坐标,将点坐标代入求得b,从而得直线BD的解析式,再把点C坐标代入BD解析式,从而求出m的值;(2)分别求出,即可求解;(3)证明△MHQ≌△QGN(AAS),则MH=GQ,NG=QH,即可求解.(1)对于y=2x+2,令x=0,则y=2,令y=0,即y=2x+2=0,解得x=-1,故点A、B的坐标分别为(-1,0)、(0,2),∵直线过点B,将点B坐标代入上式并解得:故b=2,则该直线的表达式为,当x=-3时,=1=m,即点C(-3,1);故答案为:2,1;(2)由(1)知,点A、B、C的坐标分别为(-1,0)、(0,2)、(-3,1),则,同理,,则AB2+AC2=BC2,故∠BAC为直角,且AC=BA故线段CA与线段BA之间的关系为垂直且相等;(3)当△MNQ是以点Q为直角顶点的等腰三角形时,∠MQN=90°,QM=QN,设点M、N的坐标分别为(s,2s+2)、(t,t+2),过点Q作x轴的平行线交过点M与y轴的平行线于点H,交过点N与y轴的平行线于点G,∵∠NQG+∠MQH=90°,∠NQG+∠QNG=90°,∴∠MQH=∠QNG,∵∠MHQ=∠QGN=90°,MQ=NQ,∴△MHQ≌△QGN(AAS),∴MH=GQ,NG=QH,即2s+2-(-1)=-t(或-1-2s-2=-t),s=t+2-(-1)(或-s=t+2+1),解得:或,所以,点、的坐标分别为、或、【点睛】本题考查的是一次函数综合运用,涉及到一次函数的性质、勾股定理的运用、三角形全等等,其中(3),要注意分类求解,避免遗漏.
相关试卷
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试达标测试,共21页。试卷主要包含了小斌家,在下列图象中,是的函数的是等内容,欢迎下载使用。
这是一份2021学年第二十一章 一次函数综合与测试习题,共24页。试卷主要包含了一次函数的大致图象是,一次函数的图象一定经过,一次函数y=mx﹣n,如图,已知点K为直线l等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后练习题,共25页。试卷主要包含了若直线y=kx+b经过一,若实数等内容,欢迎下载使用。