![2021-2022学年度冀教版八年级数学下册第二十一章一次函数难点解析试卷(精选含答案)第1页](http://www.enxinlong.com/img-preview/2/3/12765241/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度冀教版八年级数学下册第二十一章一次函数难点解析试卷(精选含答案)第2页](http://www.enxinlong.com/img-preview/2/3/12765241/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度冀教版八年级数学下册第二十一章一次函数难点解析试卷(精选含答案)第3页](http://www.enxinlong.com/img-preview/2/3/12765241/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版八年级下册第二十一章 一次函数综合与测试课后练习题
展开
这是一份冀教版八年级下册第二十一章 一次函数综合与测试课后练习题,共27页。试卷主要包含了,两地相距80km,甲,点A等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知一次函数y=(1﹣3k)x+k的函数值y随x的增大而增大,且图象经过第一、二、三象限,则k的值( )
A.k>0 B.k<0 C.0<k< D.k<
2、如图,已知直线与轴交于点,与轴交于点,以点为圆心、长为半径画弧,与轴正半轴交于点,则点的坐标为( )
A. B. C. D.
3、我边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶(图1).图2中,分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系,下列说法错误的是( ).
A.快艇的速度比可疑船只的速度快0.3海里/分
B.5分钟时快艇和可疑船只的距离为3.5海里
C.若可疑船只一直匀速行驶,则它从海岸出发0.5小时后,快艇才出发追赶
D.当快艇出发分钟后追上可疑船只,此时离海岸海里
4、,两地相距80km,甲、乙两人沿同一条路从地到地.甲、乙两人离开地的距离(单位:km)与时间(单位:h)之间的关系如图所示.下列说法错误的是( )
A.乙比甲提前出发1h B.甲行驶的速度为40km/h
C.3h时,甲、乙两人相距80km D.0.75h或1.125h时,乙比甲多行驶10km
5、对于正比例函数y=kx,当x增大时,y随x的增大而增大,则k的取值范围( )
A.k<0 B.k≤0 C.k>0 D.k≥0
6、甲、乙两地之间是一条直路,在全民健身活动中,王明跑步从甲地往乙地,陈启浩骑自行车从乙地往甲地,两人同时出发,陈启浩先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法中错误的是( )
A.两人出发1小时后相遇
B.王明跑步的速度为8km/h
C.陈启浩到达目的地时两人相距10km
D.陈启浩比王明提前1.5h到目的地
7、如图,在平面直角坐标系中,,,,点D在线段BA上,点E在线段BA的延长线上,并且满足,M为线段AC上一点,当点D、M、E构成以M为直角顶点的等腰直角三角形时,M点坐标为( )
A. B. C. D.
8、已知一次函数y1=kx+1和y2=x﹣2.当x<1时,y1>y2,则k的值可以是( )
A.-3 B.-1 C.2 D.4
9、点A(﹣1,y1)和点B(﹣4,y2)都在直线y=﹣2x上,则y1与y2的大小关系为( )
A.y1>y2 B.y1<y2 C.y1=y2 D.y1≥y2
10、一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离y(单位:km)与慢车行驶时间t(单位:h)的函数关系如图,则两车先后两次相遇的间隔时间是( )
A. B. C.3h D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、画出函数y=-6x与y=-6x+5的图象.
(1)这两个函数的图象形状都是______,并且倾斜程度______.
(2)函数y=-6x的图象经过______,函数y=-6x+5的图象与y轴交于点______,即它可以看作由直线y=-6x向______平移______个单位长度而得到.
2、一次函数y=(k﹣1)x+3中,函数值y随x的增大而减小,则k的取值范围是_____.
3、观察图象可以发现:
①直线y=x,y=3x向右逐渐______,即y的值随x的增大而增大;
②直线y=-x,y=-4x向右逐渐______,即y的值随x的增大而减小.
4、如果点A(﹣1,3)、B(5,n)在同一个正比例函数的图像上,那么n=___.
5、若一次函数的图象经过点,且不经过第四象限,则的取值范围为______.
三、解答题(5小题,每小题10分,共计50分)
1、请用已学过的方法研究一类新函数y=k|x﹣b|(k,b为常数,且k≠0)的图象和性质:
(1)完成表格,并在给出的平面直角坐标系中画出函数y=|x﹣2|的图象;
x
﹣2
﹣1
0
1
2
3
4
5
6
y
4
2
1
0
1
2
4
(2)点(m,y1),(m+2,y2)在函数y=|x﹣2|的图象上.
①若y1=y2,则m的值为 ;
②若y1<y2,则m的取值范围是 ;
(3)结合函数图像,写出该函数的一条性质.
2、如图,已知直线y=﹣x+3与x轴、y轴分别相交于点A、B,将△AOB沿直线CD折叠,使点A与点B重合.折痕CD与x轴交于点C,与AB交于点D.
(1)点A的坐标为 ,点B的坐标为 ;
(2)求OC的长度,并求出此时直线BC的表达式;
(3)过点B作直线BP与x轴交于点P,且使OP=OA,求△ABP的面积.
3、已知A,B两地相距的路程为12km,甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OCD和线段EF,分别表示甲、乙两人与A地的路程y甲、y乙与他们所行时间x(h)之间的函数关系,且OC与EF相交于点P.
(1)求y乙与x的函数关系式以及两人相遇地点P与A地的路程;
(2)求线段OC对应的y甲与x的函数关系式;
(3)求经过多少h,甲、乙两人相距的路程为6km.
4、已知y与x﹣2成正比例,且当x=1时,y=﹣2
(1)求变量y与x的函数关系式;
(2)请在给出的平面直角坐标系中画出此函数的图象;
(3)已知点A在函数y=ax+b的图象上,请直接写出关于x的不等式ax+b>2x﹣4的解集 .
5、一个皮球从16m的高处落下,第一次落地后反弹起8m,第二次落地后反弹起4m,以后每次落地后的反弹高度都减半,h表示反弹高度(单位:m),n表示落地次数.
(1)写出表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式;
(2)求皮球第几次落地后的反弹高度为m.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据一次函数的性质得1﹣3k>0,解得k<,再由图象经过一、二、三象限,根据一次函数与系数的关系得到k>0,于是可确定k的取值范围.
【详解】
解:∵一次函数y=(1﹣3k)x+k,y随x的增大而增大,
∴1﹣3k>0,解得k<,图象经过第一、三象限,
∵图象经过一、二、三象限,
∴k>0,
∴k的取值范围为0<k<.
故选:C.
【点睛】
本题考查了一次函数y=kx+b(k≠0,k,b为常数)的性质.它的图象为一条直线,当k>0,图象经过第一,三象限,y随x的增大而增大;当k<0,图象经过第二,四象限,y随x的增大而减小;当b>0,图象与y轴的交点在x轴的上方;当b=0,图象过坐标原点;当b<0,图象与y轴的交点在x轴的下方.
2、C
【解析】
【分析】
求出点A、点坐标,求出长即可求出点的坐标.
【详解】
解:当x=0时,,点B的坐标为(0,-1);当y=0时,,解得,,点A的坐标为(2,0);
即,,;
以点为圆心、长为半径画弧,与轴正半轴交于点,
故,则,
点C的坐标为;
故选:C
【点睛】
本题考查了一次函数与坐标轴交点坐标和勾股定理,解题关键是求出一次函数与坐标轴交点坐标,利用勾股定理求出线段长.
3、C
【解析】
【分析】
根据图象分别计算两船的速度判断A正确;利用图象计算出发5分钟时的距离差判断B正确;可疑船只出发5海里后快艇追赶,计算时间判断C错误正确;设快艇出发t分钟后追上可疑船只,列方程,求解即可判断D正确.
【详解】
解:快艇的速度为,可疑船只的速度为(海里/分),
∴快艇的速度比可疑船只的速度快0.5-0.2=0.3海里/分,故A选项不符合题意;
5分钟时快艇和可疑船只的距离为海里,故B选项不符合题意;
由图象可知:可疑船只出发5海里后快艇追赶,分钟=小时,故选项C符合题意;
设快艇出发t分钟后追上可疑船只,,解得t=,
这时离海岸海里,故D选项不符合题意;
故选:C.
【点睛】
此题考查了一次函数的图象,正确理解函数图象并得到相关信息进行计算是解题的关键.
4、C
【解析】
【分析】
根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.
【详解】
解:A、根据图象可得乙比甲提前出发1h,故选项A说法正确,不符合题意;
B、甲行驶的速度为20÷(1.5-1)=40km/h,故选项B说法正确,不符合题意;
C、乙行驶的速度为
∴3h时,甲、乙两人相距,故选项C说法错误,符合题意;
D、;
∴0.75h或1.125h时,乙比甲多行驶10km,
∴选项D说法正确,不符合题意.
故选C.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答
5、C
【解析】
略
6、C
【解析】
【分析】
根据函数图象中的数据,可以分别计算出两人的速度,从而可以判断各个选项中的说法是否正确,从而可以解答本题.
【详解】
解:由图象可知,
两人出发1小时后相遇,故选项A正确;
王明跑步的速度为24÷3=8(km/h),故选项B正确;
陈启浩的速度为:24÷1-8=16(km/h),
陈启浩从开始到到达目的地用的时间为:24÷16=1.5(h),
故陈启浩到达目的地时两人相距8×1.5=12(km),故选项C错误;
陈启浩比王提前3-1.5=1.5h到目的地,故选项D正确;
故选:C.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.
7、A
【解析】
【分析】
过点M作y轴的平行线,过点E、D分别作这条直线的垂线,垂足分别为F、G,求出直线AB、AC的解析式,设出点D、E、M的坐标,根据△DGM≌△MFE,建立方程求解即可.
【详解】
解:过点M作y轴的平行线,过点E、D分别作这条直线的垂线,垂足分别为F、G,
设直线AB的解析式为,把,代入得,
,解得,,
∴AB的解析式为,
同理可求直线AC的解析式为,
设点D坐标为,点M坐标为,
∵,
∴
∵,,
∴点E是由点D向右平移3个单位,向上平移9个单位得到的,则点E坐标为,
∵∠EFM=∠DGM=∠DME
∴∠FEM+∠FME=∠DMG+∠FME =90°,
∴∠FEM =∠DMG,
∵DM=EM,
∴△DGM≌△MFE,
∴DG=FM,GM=EF,
根据坐标可列方程组,b-a=3a+18+1.5b-9-1.5b+9-3a-9=b-a-3,
解得,,
所以,点M坐标为,
故选:A.
【点睛】
本题考查了求一次函数解析式和全等三角形的判定与性质,解题关键是求出直线解析式,设出点的坐标,利用全等三角形建立方程.
8、B
【解析】
【分析】
先求出不等式的解集,结合x<1,即可得到k的取值范围,即可得到答案.
【详解】
解:根据题意,
∵y1>y2,
∴,
解得:,
∴,
∴;,
∵当x<1时,y1>y2,
∴
∴,
∴;
∴k的值可以是-1;
故选:B.
【点睛】
本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.
9、B
【解析】
【分析】
由直线y=-2x的解析式判断k=−21;
(3)
解:对于函数y=k|x−b|,当k>0时,函数值y先随x的增大而减小,函数值为0后,再随x的增大而增大.
【点睛】
本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质,数形结合解题是关键.
2、 (1)(4,0),(0,3)
(2),y=﹣x+3
(3)3或9
【解析】
【分析】
(1)令x=0和y=0即可求出点A,B的坐标;
(2)连接BC,设OC=x,则AC=BC=4﹣x,在Rt△BOC中,利用勾股定理求出x,再利用待定系数法求出直线BC的解析式即可;
(3)先求出点P的坐标,根据三角形的面积公式即可求解.
(1)
解:令y=0,则x=4;令x=0,则y=3,
故点A的坐标为(4,0),点B的坐标为(0,3).
故答案为:(4,0),(0,3);
(2)
解:如图所示,连接BC,
设OC=x,
∵直线CD垂直平分线段AB,
∴AC=CB=4﹣x,
∵∠BOA=90°,
∴OB2+OC2=CB2,
32+x2=(4﹣x)2,
解得,
∴,
∴C(,0),
设直线BC的解析式为y=kx+b,
则有,
解得,
∴直线BC的解析式为y=﹣x+3;
(3)
解:如图,
∵点A的坐标为(4,0),
∴OA=4,
∵OP=OA,
∴OP=2,
∴点P的坐标为(2,0),P′(﹣2,0),
∴AP=2,AP′=6,
∴S△ABP=AP•OB=×2×3=3
S△ABP′=AP′•OB=×6×3=9,
综上:△ABP的面积为3或9.
【点睛】
本题考查了一次函数,勾股定理,解题的关键是掌握一次函数的性质.
3、 (1),9km
(2)
(3)经过小时或1小时,甲、乙两人相距6km.
【解析】
【分析】
(1)根据题意和函数图象中的数据,可以得到y乙与x的函数关系式以及两人相遇地点与A地的距离;
(2)根据函数图象中的数据,可以计算出线段OP对应的y甲与x的函数关系式;
(3)根据(1)和(2)中的结果,分两种情况讨论,可以得到经过多少小时,甲、乙两人相距6km.
(1)
解:设y乙与x的函数关系式是,
∵点E(0,12),F(2,0)在函数y乙=kx+b的图象上,
∴ ,解得 ,
即y乙与x的函数关系式是,
当x=0.5时,,
即两人相遇地点P与A地的距离是9km;
(2)
解:设线段OC对应的y甲与x的函数关系式是y甲=ax,
∵点(0.5,9)在函数y甲=ax的图象上,
∴9=0.5a, 解得a=18,
即线段OP对应的y甲与x的函数关系式是y甲=18x;
(3)
解:①令 即
或
解得:或
甲从A地到达B地的时间为:小时,
经检验:不符合题意,舍去,
②当甲到达B地时,乙离B地6千米所走时间为:
(小时),
综上所述,经过小时或1小时,甲、乙两人相距6km.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.其中第三问要注意进行分类讨论.
4、 (1)y=2x﹣4
(2)见解析
(3)x<3
【解析】
【分析】
(1)设y=k(x﹣2)(k为常数,k≠0),把x=1,y=﹣2代入得:﹣2=k(1﹣2),求出k=2即可;
(2)列表描点连线即可;
(3)先确定A点的坐标是(3,2),把A点的横坐标代入y=2x﹣4求出函数值=2,即点A也在函数y=2x﹣4的图象上,点A是函数y=ax+b和函数y=2x﹣4的交点,然后利用图像法求不等式的解集即可.
(1)
解:∵y与x﹣2成正比例,
∴设y=k(x﹣2)(k为常数,k≠0),
把x=1,y=﹣2代入得:﹣2=k(1﹣2),
解得:k=2,
即y=k(x﹣2)=2(x﹣2)=2x﹣4,
所以变量y与x的函数关系式是y=2x﹣4;
(2)
列表
x
0
2
y
-4
0
描点(0,-4),(2,0),
连线得y=2x﹣4的图象;
(3)
从图象可知:A点的坐标是(3,2),把A点的横坐标x=3代入y=2x﹣4时,y=2,
即点A也在函数y=2x﹣4的图象上,
即点A是函数y=ax+b和函数y=2x﹣4的交点,
∴关于x的不等式ax+b>2x﹣4反应在函数图像函数y=ax+b在函数y=2x﹣4图像上方,交点A的左侧,
所以关于x的不等式ax+b>2x﹣4的解集是x<3,
故答案为:x<3.
【点睛】
本题考查待定系数法求函数解析式,描点法画函数图像,用图像法求不等式的解集,掌握待定系数法求函数解析式,描点法画函数图像,用图像法求不等式的解集是解题关键.
5、 (1)h(n为正整数);
(2)皮球第7次落地后的反弹高度为m.
【解析】
【分析】
(1)由题意可知,每次落地后的反弹高度都减半,依次可得表示反弹高度与落地次数的对应函数关系;
(2)把h代入(1)中解析式即可解题.
(1)
解:根据题意得,
表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式:h(n为正整数);
(2)
把h代入h,
得,
2n=16×8=27,
n=7
故皮球第7次落地后的反弹高度为m.
【点睛】
本题考查一次函数的应用,是基础考点,掌握相关知识是解题关键.
相关试卷
这是一份初中冀教版第二十一章 一次函数综合与测试课后练习题,共28页。试卷主要包含了直线不经过点,若点等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十一章 一次函数综合与测试当堂达标检测题,共27页。试卷主要包含了如图所示,直线分别与轴,巴中某快递公司每天上午7等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步练习题,共25页。试卷主要包含了如图,已知点K为直线l,已知一次函数y=kx+b,一次函数的大致图象是等内容,欢迎下载使用。
![英语朗读宝](http://www.enxinlong.com/img/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)