搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年基础强化冀教版八年级数学下册第二十一章一次函数重点解析试卷(无超纲)

    2021-2022学年基础强化冀教版八年级数学下册第二十一章一次函数重点解析试卷(无超纲)第1页
    2021-2022学年基础强化冀教版八年级数学下册第二十一章一次函数重点解析试卷(无超纲)第2页
    2021-2022学年基础强化冀教版八年级数学下册第二十一章一次函数重点解析试卷(无超纲)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第二十一章 一次函数综合与测试同步练习题

    展开

    这是一份冀教版八年级下册第二十一章 一次函数综合与测试同步练习题,共32页。试卷主要包含了若直线y=kx+b经过一等内容,欢迎下载使用。
    八年级数学下册第二十一章一次函数重点解析
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、甲、乙两车从城出发前往城,在整个行驶过程中,汽车离开城的距离与行驶时间的函数图象如图所示,下列说法正确的有(  )
    ①甲车的速度为;②乙车用了到达城;③甲车出发时,乙车追上甲车

    A.0个 B.1个 C.2个 D.3个
    2、如图,平面直角坐标系中,直线分别交x轴、y轴于点B、A,以AB为一边向右作等边,以AO为一边向左作等边,连接DC交直线l于点E.则点E的坐标为( )

    A. B.
    C. D.
    3、,两地相距80km,甲、乙两人沿同一条路从地到地.甲、乙两人离开地的距离(单位:km)与时间(单位:h)之间的关系如图所示.下列说法错误的是( )

    A.乙比甲提前出发1h B.甲行驶的速度为40km/h
    C.3h时,甲、乙两人相距80km D.0.75h或1.125h时,乙比甲多行驶10km
    4、如图,点A的坐标为,点B是x轴正半轴上的动点,以AB为腰作等腰直角,使,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )

    A. B.
    C. D.
    5、如图,直线与x轴交于点B,与y轴交于点C,点,D为线段的中点,P为y轴上的一个动点,连接、,当的周长最小时,点P的坐标为( )

    A. B. C. D.
    6、关于一次函数 ,下列说法不正确的是( )
    A.图象经过点(2,0) B.图象经过第三象限
    C.函数y随自变量x的增大而减小 D.当x≥2时,y≤0
    7、如图,在Rt△ABO中,∠OBA=90°,A(4,4),且,点D为OB的中点,点P为边OA上的动点,使四边形PDBC周长最小的点P的坐标为( )

    A.(2,2) B.(,) C.(,) D.(,)
    8、若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的( )
    A. B. C. D.
    9、一次函数,,且随的增大而减小,则其图象可能是( )
    A. B.
    C. D.
    10、如图,在平面直角坐标系中,线段AB的端点为A(﹣2,1),B(1,2),若直线y=kx﹣1与线段AB有交点,则k的值不能是(  ).

    A.-2 B.2
    C.4 D.﹣4
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,点C的坐标是(2,2),A为坐标原点,CB⊥x轴于B,CD⊥y轴于D,点E是线段BC的中点,过点A的直线y=kx交线段DC于点F,连接EF,若AF平分∠DFE,则k的值为_________.

    2、已知一次函数的图象过点(3,5)与(-4,-9),求一次函数的解析式.
    分析:求一次函数y=kx+b的解析式,关键是求出k,b的值.从已知条件可以列出关于k,b的二元一次方程组,并求出k,b.
    解:设这个一次函数的解析为:y=kx+b
    因为y=kx+b的图象过点(3,5)与(-4,-9),所以

    解方程组得:,
    这个一次函数的解析式为:___
    3、如图,一次函数y=2x和y=ax+5的图象交于点A(m,3),则不等式ax+5<2x的解集是 _____.

    4、在平面直角坐标系xOy中,过点A(5,3)作y轴的平行线,与x轴交于点B,直线y=kx+b(k,b为常数,k≠0)经过点A且与x轴交于点C(9,0).我们称横、纵坐标都是整数的点为整点.

    (1)记线段AB,BC,CA围成的区域(不含边界)为W.请你结合函数图象,则区域W内的整点个数为______;
    (2)将直线y=kx+b向下平移n个单位(n≥0),若平移后的直线与线段AB,BC围成的区域(不含边界)存在整点,请结合图象写出n的取值范围______.
    5、若正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限,请写出一个满足上述要求的k的值______.
    三、解答题(5小题,每小题10分,共计50分)
    1、已知一次函数的图象与轴交于点,与轴交于点
    (1)求、两点的坐标;
    (2)画出函数的图象
    2、甲、乙两人沿同一直道从A地去B地.已知A,B两地相距9000m,甲的步行速度为100m/min,他每走半个小时就休息15min,经过2小时到达目的地.乙的步行速度始终不变,他在途中不休息,在整个行程中,甲离A地的距离(单位:m)与时间x(单位:min)之间的函数关系如图所示(甲、乙同时出发,且同时到达目的地).

    (1)在图中画出乙离A地的距离(单位:m)与时间x之间的函数图象;
    (2)求甲、乙两人在途中相遇的时间.
    3、如图,一次函数的图象与轴交于点,与正比例函数的图象相交于点,且.

    (1)分别求出这两个函数的解析式;
    (2)点在轴上,且是等腰三角形,请直接写出点的坐标.
    4、一次函数y=kx+b,当-3≤x≤1时,对应的y的取值为1≤y≤9,求该函数的解析式.
    5、如图是某种蜡烛在燃烧过程中高度与时间之间关系的图象,由图象解答下列问题:

    (1)求蜡烛在燃烧过程中高度与时间之间的函数表达式
    (2)经过多少小时蜡烛燃烧完毕?

    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    求出正比函数的解析式,k值的绝对值表示车的速度;横轴上两个时间点的差表示乙走完全程所用时间,求出一次函数的解析式,确定它与正比例函数的交点坐标,横坐标即为二车相遇时间.
    【详解】
    设甲的解析式为y=kx,
    ∴6k=300,
    解得k=50,
    ∴=50x,
    ∴甲车的速度为,
    ∴①正确;
    ∵乙晚出发2小时,
    ∴乙车用了5-2=3(h)到达城,
    ∴②错误;
    设,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    即甲行驶4小时,乙追上甲,
    ∴③正确;
    故选C.
    【点睛】
    本题考查了待定系数法确定函数的解析式,函数图像,交点坐标的确定,解二元一次方程组,熟练掌握待定系数法,准确求交点的坐标是解题的关键.
    2、C
    【解析】
    【分析】
    由题意求出C和D点坐标,求出直线CD的解析式,再与直线AB解析式联立方程组即可求出交点E的坐标.
    【详解】
    解:令直线中,得到,故,
    令直线中,得到,故,
    由勾股定理可知:,
    ∵,且,
    ∴,,
    过C点作CH⊥x轴于H点,过D点作DF⊥x轴于F,如下图所示:

    ∵为等边三角形,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    同理,∵为等边三角形,
    ∴,,
    ∴,
    ∴,
    ∴,
    设直线CD的解析式为:y=kx+b,代入和,
    得到:,解得,
    ∴CD的解析式为:,
    与直线联立方程组,
    解得,故E点坐标为,
    故选:C.
    【点睛】
    本题考查的是一次函数图象上点的坐标特征,本题的关键是求出点C、D的坐标,进而求解.
    3、C
    【解析】
    【分析】
    根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.
    【详解】
    解:A、根据图象可得乙比甲提前出发1h,故选项A说法正确,不符合题意;
    B、甲行驶的速度为20÷(1.5-1)=40km/h,故选项B说法正确,不符合题意;
    C、乙行驶的速度为
    ∴3h时,甲、乙两人相距,故选项C说法错误,符合题意;
    D、;

    ∴0.75h或1.125h时,乙比甲多行驶10km,
    ∴选项D说法正确,不符合题意.
    故选C.
    【点睛】
    本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答
    4、A
    【解析】
    【分析】
    根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.
    【详解】
    解:作AD∥x轴,作CD⊥AD于点D,如图所示,

    由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,
    ∵AD∥x轴,
    ∴∠DAO+∠AOB=180°,
    ∴∠DAO=90°,
    ∴∠OAB+∠BAD=∠BAD+∠DAC=90°,
    ∴∠OAB=∠DAC,
    在△OAB和△DAC中

    ∴△OAB≌△DAC(AAS),
    ∴OB=CD,
    ∴CD=x,
    ∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,
    ∴y=x+1(x>0).
    故选:A.
    【点睛】
    本题考查动点问题的函数图象,全等三角形的性质和判定,等腰三角形的定义.解题的关键是明确题意,建立相应的函数关系式,根据函数关系式判断出正确的函数图象.
    5、A
    【解析】
    【分析】
    作点关于轴的对称点,连接,交轴于点,则,进而根据对称性求得当点P与重合时,的周长最小,通过求直线的解析式,即可求得点的坐标
    【详解】
    解:如图,作点关于轴的对称点,连接,交轴于点,则,连接,

    的周长,点是定点,则的长不变,
    当重合时,的周长最小,
    由,令,令,则

    是的中点

    ,点是关于轴对称的点

    设直线的解析式为:,将,代入,

    解得
    直线的解析式为:
    令,则

    故选A
    【点睛】
    本题考查了轴对称的性质求最值,求一次函数解析式,求直线与坐标轴的交点,求线段中点坐标,掌握根据轴对称的性质求线段和的最值是解题的关键.
    6、B
    【解析】
    【分析】
    当 时, ,可得图象经过点(2,0);再由 ,可得图象经过第一、二、四象限;函数y随自变量x的增大而减小;然后根据 时, ,可得当x≥2时,y≤0,即可求解.
    【详解】
    解:当 时, ,
    ∴图象经过点(2,0),故A正确,不符合题意;
    ∵ ,
    ∴图象经过第一、二、四象限,故B错误,符合题意;
    ∴函数y随自变量x的增大而减小,故C正确,不符合题意;
    当 时, ,
    ∴当x≥2时,y≤0,故D正确,不符合题意;
    故选:B
    【点睛】
    本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.
    7、C
    【解析】
    【分析】
    先确定点D关于直线AO的对称点E(0,2),确定直线CE的解析式,直线AO的解析式,两个解析式的交点就是所求.
    【详解】
    ∵∠OBA=90°,A(4,4),且,点D为OB的中点,
    ∴点D(2,0),AC=1,BC=3,点C(4,3),
    设直线AO的解析式为y=kx,
    ∴4=4k,
    解得k=1,
    ∴直线AO的解析式为y=x,
    过点D作DE⊥AO,交y轴于点E,交AO于点F,
    ∵∠OBA=90°,A(4,4),
    ∴∠AOE=∠AOB=45°,
    ∴∠OED=∠ODE=45°,OE=OD,
    ∴DF=FE,
    ∴点E是点D关于直线AO的对称点,
    ∴点E(0,2),
    连接CE,交AO于点P,此时,点P是四边形PCBD周长最小的位置,
    设CE的解析式为y=mx+n,

    ∴,
    解得,
    ∴直线CE的解析式为y=x+2,
    ∴y=14x+2y=x,
    解得,
    ∴使四边形PDBC周长最小的点P的坐标为(,),
    故选C.
    【点睛】
    本题考查了一次函数的解析式,将军饮马河原理,熟练掌握待定系数法和将军饮马河原理是解题的关键.
    8、B
    【解析】
    【分析】
    根据直线y=kx+b经过一、二、四象限,可得k<0,b>0,从而得到直线y=bx﹣k过一、二、三象限,即可求解.
    【详解】
    解:∵直线y=kx+b经过一、二、四象限,
    ∴k<0,b>0,
    ∴﹣k>0,
    ∴直线y=bx﹣k过一、二、三象限,
    ∴选项B中图象符合题意.
    故选:B
    【点睛】
    本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.
    9、B
    【解析】
    【分析】
    根据一次函数的图象是随的增大而减小,可得,再由,可得,即可求解.
    【详解】
    解:一次函数的图象是随的增大而减小,
    ∴ ,

    又,

    一次函数的图象经过第二、三、四象限.
    故选:B
    【点睛】
    本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.
    10、B
    【解析】
    【分析】
    当直线y=kx−1过点A时,求出k的值,当直线y=kx−1过点B时,求出k的值,介于二者之间的值即为使直线y=kx−1与线段AB有交点的x的值.
    【详解】
    解:①当直线y=kx−1过点A时,将A(−2,1)代入解析式y=kx−1得,k=−1,
    ②当直线y=kx−1过点B时,将B(1,2)代入解析式y=kx−1得,k=3,
    ∵|k|越大,它的图象离y轴越近,
    ∴当k≥3或k≤-1时,直线y=kx−1与线段AB有交点.
    故选:B.
    【点睛】
    本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线.
    二、填空题
    1、3或1
    【解析】
    【分析】
    分两种情况:①当点F在DC之间时,作出辅助线,求出点F的坐标即可求出k的值;②当点F与点C重合时求出点F的坐标即可求出k的值.
    【详解】
    解:①如图,作AG⊥EF交EF于点G,连接AE,

    ∵AF平分∠DFE,
    ∴DF=AG=2
    在RT△ADF和RT△AGF中,

    ∴RT△ADF≌RT△AGF
    ∴DF=FG
    ∵点E是BC边的中点,
    ∴BE=CE=1
    ∴AE=

    ∴ 在RT△FCE中,EF2=FC2+CE2,即(DF+1)2=(2-DF)2+1,
    解得,
    ∴点,
    把点F的坐标代入y=kx得:2=,解得k=3;
    ②当点F与点C重合时,
    ∵四边形ABCD是正方形,
    ∴AF平分∠DFE,
    ∴F(2,2),
    把点F的坐标代入y=kx得:2=2k,解得k=1.
    故答案为:1或3.
    【点睛】
    本题主要考查了一次函数综合题,涉及角平分线的性质,三角形全等的判定及性质,正方形的性质理,及勾股定解题的关键是分两种情况求出k.
    2、y=2x-1
    【解析】

    3、##
    【解析】
    【分析】
    把点A(m,3)代入y=2x求解的值,再利用的图象在的图象的上方可得答案.
    【详解】
    解: 一次函数y=2x和y=ax+5的图象交于点A(m,3),


    不等式ax+5<2x的解集是
    故答案为:
    【点睛】
    本题考查的是根据一次函数的交点坐标确定不等式的解集,理解一次函数的图象的性质是解本题的关键.
    4、 3 ≤n<
    【解析】
    【分析】
    (1)根据题意和图象,可以得到区域W内的整点个数;
    (2)根据直线y=kx+b过点A和点C,从而可以得到直线的表达式是y=-x+,设平移后的直线解析式是y=-x+m,分别代入(6,2)、(6,1)求得m的值,结合图象即可求得.
    【详解】
    解:(1)由图象可得,

    区域W内的整点的坐标分别为(6,1),(6,2),(7,1),
    即区域W内的整点个数是3个,
    故答案为:3;
    (2)∵直线y=kx+b过点A(5,3),点C(9,0),
    ∴,
    ∴,
    即直线y=kx+b的表达式是y=﹣x+,
    设平移后的直线解析式是y=﹣x+m,
    把(6,2)代入得,2=﹣+m,解得m=,则﹣=,
    把(6,1)代入得,1=﹣+m,解得m=,则﹣=,
    由图象可知,将直线y=kx+b向下平移n个单位(n≥0),若平移后的直线与线段AB,BC围成的区域(不含边界)存在整点,请结合图象写出n的取值范围≤n<.
    故答案为:≤n<.
    【点睛】
    本题考查了一次函数图象与几何变换、待定系数法求一次函数解析式,解答本题的关键是明确题意,利用数形结合的思想解答.
    5、2(满足k>0即可)
    【解析】
    【分析】
    根据函数图象经过第一、三象限,可判断k>0,任取一个正值即可.
    【详解】
    解:∵正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限,
    ∴k>0.
    故答案为:2(满足k>0即可).
    【点睛】
    本题考查了正比例函数的性质,解题关键是明确正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限时,k>0.
    三、解答题
    1、 (1),
    (2)见解析
    【解析】
    【分析】
    (1)分别令,即可求得点的坐标;
    (2)根据两点,作出一次函数的图象即可
    (1)
    令,则,即,
    令,则,即
    (2)
    过,作直线的图象,如图所示,

    【点睛】
    本题考查了一次函数与坐标轴的交点问题,画一次函数图象,掌握一次函数的性质是解题的关键.
    2、 (1)图象见解析;
    (2)甲、乙两人在途中相遇的时间为40分钟,60分钟和80分钟的时候.
    【解析】
    【分析】
    (1)根据乙的步行速度始终不变,且他在途中不休息,即直接连接原点和点(120,9000)即可;
    (2)根据图象可判断甲、乙两人在途中相遇3次,分段计算,利用待定系数法结合图象即可求出相遇的时间.
    (1)
    乙离A地的距离(单位:m)与时间x之间的函数图像,如图即是.

    (2)
    根据题意结合图象可知甲、乙两人在途中相遇3次.
    如图,第一次相遇在AB段,第二次相遇在BC段,第三次相遇在CD段,
    根据题意可设的解析式为:,
    ∴,
    解得:,
    ∴的解析式为.
    ∵甲的步行速度为100m/min,他每走半个小时就休息15min,
    ∴甲第一次休息时走了米,
    对于,当时,即,
    解得:.
    故第一次相遇的时间为40分钟的时候;
    设BC段的解析式为:,
    根据题意可知B(45,3000),D (75,6000).
    ∴,
    解得:,
    故BC段的解析式为:.
    相遇时即,故有,
    解得:.
    故第二次相遇的时间为60分钟的时候;
    对于,当时,即,
    解得:.
    故第三次相遇的时间为80分钟的时候;

    综上,甲、乙两人在途中相遇的时间为40分钟,60分钟和80分钟的时候.
    【点睛】
    本题考查一次函数的实际应用.理解题意,掌握利用待定系数法求函数解析式是解答本题的关键.
    3、 (1)正比例函数的解析式为:,一次函数的解析式为:
    (2)或或或
    【解析】
    【分析】
    (1)把点代入可得,再由,可得点 ,即可求解;
    (2)分三种情况:当OP=OA=5时,当AP=OA时,当AP=OP时,即可求解.
    (1)
    解:∵一次函数的图象与轴交于点,与正比例函数的图象相交于点,
    ∴,解得:
    ∴正比例函数的解析式为:,
    ∵,
    ∴ ,
    ∵,
    ∴ ,
    ∴点 ,
    把点, 代入,得:
    b=-53k2+b=4 ,解得: ,
    ∴一次函数的解析式为:;
    (2)
    解:当OP=OA=5时,点的坐标为或;
    当AP=OA时,过点A作 轴于点C,

    ∴OC=PC=3,
    ∴OP=6,
    ∴点;
    当AP=OP时,过点P作PD⊥OA于点D,过点D作 轴于点E,

    ∴点D为AO的中点,即 ,
    ∵点,
    ∴点 ,
    ∴ ,
    设点 ,则 ,
    ∴ ,
    ∵ ,
    ∴ ,
    即 ,
    解得: 或 (舍去)
    ∴点 ,
    综上所述,点P的坐标为或或或.
    【点睛】
    本题主要考查了一次函数的图象和性质,等腰三角形的性质,熟练掌握一次函数的图象和性质,等腰三角形的性质,利用分类讨论思想和数形结合解答是解题的关键.
    4、函数的解析式为y=2x+7或y=-2x+3
    【解析】
    【分析】
    分类讨论:由于一次函数是递增或递减函数,所以当一次函数y=kx+b为增函数时,则x=-3,y=1;x=1,y=9,当一次函数y=kx+b为减函数时,则x=-3,y=9;x=1,y=1,然后把它们分别代入y=kx+b中得到方程组,再解两个方程组即可.
    【详解】
    解:当x=-3,y=1;x=1,y=9,
    ∴,
    解方程组得;
    当x=-3,y=9;x=1,y=1,
    ∴,
    解方程组得,
    ∴函数的解析式为y=2x+7或y=-2x+3.
    【点睛】
    本题考查了待定系数法求一次函数解析式:先设一次函数的解析式为y=kx+b,然后把一次函数图象上两点的坐标代入得到关于k、b的方程组,解方程组求出k、b的值,从而确定一次函数的解析式.也考查了分类讨论思想的运用.
    5、 (1)y=-8x+15(0≤x≤)
    (2)小时
    【解析】
    【分析】
    (1)由图象可知一次函数过(0,15),(1,7)两点,可根据待定系数法列方程,求函数关系式.
    (2)将y=0的值代入,求x的解,即为蜡烛全部燃烧完所用的时间;
    (1)
    由图象可知过(0,15),(1,7)两点,
    设一次函数表达式为y=kx+b,
    ∴,
    解得,
    ∴此一次函数表达式为:y=-8x+15(0≤x≤).
    (2)
    令y=0
    ∴-8x+15=0
    解得:x=,
    答:经过小时蜡烛燃烧完毕.
    【点睛】
    本题考查了用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.

    相关试卷

    冀教版第二十一章 一次函数综合与测试课时作业:

    这是一份冀教版第二十一章 一次函数综合与测试课时作业,共28页。试卷主要包含了已知点等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试课时练习:

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课时练习,共33页。

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步测试题:

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步测试题,共22页。试卷主要包含了若实数等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map