![2022年最新冀教版八年级数学下册第二十章函数章节测评练习题(精选)第1页](http://www.enxinlong.com/img-preview/2/3/12765375/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新冀教版八年级数学下册第二十章函数章节测评练习题(精选)第2页](http://www.enxinlong.com/img-preview/2/3/12765375/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新冀教版八年级数学下册第二十章函数章节测评练习题(精选)第3页](http://www.enxinlong.com/img-preview/2/3/12765375/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学第二十章 函数综合与测试综合训练题
展开
这是一份初中数学第二十章 函数综合与测试综合训练题,共19页。
冀教版八年级数学下册第二十章函数章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在某火车站托运物品时,不超过3kg的物品需付1.5元,以后每增加1kg(不足1kg按1kg计)需增加托运费0.5元,则下列图象能表示出托运费y与物品重量x之间的函数关系式的是( )A. B.C. D.2、下列各图表示y是x的函数的图象是( )A. B.C. D.3、速度分别为100km/h和akm/h(0<a<100)的两车分别从相距s千米的两地同时出发,沿同一方向匀速前行.行驶一段时间后,其中一车按原速度原路返回,直到与另一车相遇时两车停止.在此过程中,两车之间的距离y(km)与行驶时间t(h)之间的函数关系如图所示.下列说法:①a=60;②b=2;③c=b+;④若s=40,则b=.其中说法正确的是( )A.①②③ B.①④ C.①② D.①③4、下列关系中,一定能称是x的函数的是( )A.y2=4x B.|y|=x-2 C.y=|x|-3 D.y4=64x5、下列曲线中,表示y是x的函数的是( )A. B.C. D.6、小强和爷爷去爬山,爷爷先出发一段时间后小强再出发,途中小强追上了爷爷并最终先爬到山顶,两人所爬的高度h(米)与小强出发后的时间t(分钟)的函数关系如图所示,下列结论正确的是:( )A.爷爷比小强先出发20分钟B.小强爬山的速度是爷爷的2倍C.表示的是爷爷爬山的情况,表示的是小强爬山的情况D.山的高度是480米7、下面关于函数的三种表示方法叙述错误的是( )A.用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化B.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值C.用解析式法表示函数关系,可以方便地计算函数值D.任何函数关系都可以用上述三种方法来表示8、某天早晨,小明离家跑步到公园锻炼一会后又回到家里.下面图像中,能反映小明离家的距离y和时间x的函数关系的是( )A. B.C. D.9、甲、乙二人约好同时出发,沿同一路线去某博物馆参加科普活动,如图,x表示的是行走时间(单位:分),y表示的是甲到出发地的距离(单位:米),最后两人都到达了目的地.根据图中提供的信息,下面有四个结论:①甲、乙二人第一次相遇后,停留了10分钟;②甲先到达目的地;③甲停留10分钟之后提高了行走速度;④甲行走的平均速度要比乙行走的平均速度快.其中正确的是( )A.①②④ B.①②③ C.①③④ D.②③④10、某油箱容量为60升的汽车,加满汽油后行驶了100千米时,邮箱中的汽油大约消耗了,如果加满后汽车的行驶路程为x千米,邮箱中剩余油量为y升,则y与x之间的函数关系式是( )A.y=0.12x B.y=60+0.12x C.y=-60+0.12x D.y=60-0.12x第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、像y=0.5x+10这样,用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法.这种式子叫做函数的__________.2、判断一个变量是否是另一个变量的函数,关键是看当一个变量确定时,另一个变量有_________确定的值与它对应.3、已知函数f(x)=,f(2)=___.4、在函数中,自变量x的取值范围是______.5、如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为,一边长为,那么在60,S,a中,变量有________________个.三、解答题(5小题,每小题10分,共计50分)1、求函数的自变量的取值范围.2、汽车在发动后的前10秒内以匀加速a=0.8m/s2行驶,这10s内,经过t(s)汽车行驶的路程为s=at2.(1)求t=2.5s和3.5s时,汽车所行驶的路程.(2)汽车在发动后行驶10m,15m所需的时间各为多少? (精确到0.1)3、一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示)与x之间的函数关系.根据图象进行以下探究:[信息读取](1)甲,乙两地相距______千米,两车出发后______小时相遇;(2)普通列车到达终点共需______小时,普通列车的速度是______千米/小时:[解决问题](3)求动车的速度:(4)求点C的坐标.4、如图,这是小龙骑自行车离家的距离与时间之间的关系图象.(1)在这个问题中,自变量是 ,因变量是 .(2)小龙何时到达离家最远的地方?此时离家多远?(3)求出当到4h时,小龙骑自行车的速度.5、在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质及其应用的过程.以下是我们研究函数的性质及其应用的部分过程.请按要求完成下列各小题.(1)请把表补充完整,并在给出的图中补全该函数的大致图像;(2)请根据这个函数的图像,写出该函数的一条性质;(3)已知函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.(近似值保留一位小数,误差不超过0.2)……-5-4-3-202345…………-14 …… -参考答案-一、单选题1、D【解析】【分析】根据题意分析出 托运费y与物品重量x之间的函数关系,画出图像即可.【详解】解:由题意可得,当时,,∵物品重量每增加1kg(不足1kg按1kg计)需增加托运费0.5元,∴托运费y与物品重量x之间的函数图像为:故选:D.【点睛】此题考查了函数的图像,解题的关键是根据题意正确分析出托运费y与物品重量x之间的函数关系.2、D【解析】【详解】解:A、不是的函数的图象,此项不符题意;B、不是的函数的图象,此项不符题意;C、不是的函数的图象,此项不符题意;D、是的函数的图象,此项符合题意;故选:D.【点睛】本题考查了函数,熟记函数的定义(一般的,在一个变化过程中,假设有两个变量,如果对于任意一个都有唯一确定的一个和它对应,那么就称是自变量,是的函数)是解题关键.3、D【解析】【分析】①利用“速度=路程÷时间”可求出两车的速度差,结合快车的速度即可求得a值,即可判断①;②利用“时间=两车之间的距离÷两车速度差”可得出b值,由s不确定可得出b值不确定即可判断②;③利用“两车第二次相遇的时间=快车转向时的时间+两车之间的距离÷两车的速度之和”可得出c值,即可判断③;④由②的结论结合s=40可得出b值,即可判定④.【详解】解:①两车的速度之差为80÷(b+2﹣b)=40(km/h),∴a=100﹣40=60,结论①正确;②两车第一次相遇所需时间=(h),∵s的值不确定,∴b值不确定,结论②不正确;③两车第二次相遇时间为b+2+=b+(h),∴c=b+,结论③正确;④∵b=,s=40,∴b=1,结论④不正确.故选:D.【点睛】本题主要考查了一次函数的应用,掌握数形结合思想成为解答本题的关键.4、C【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数.【详解】解:根据函数概念可得:在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应可得C中y是x的函数,故选:C.【点睛】此题主要考查了函数的概念,关键是掌握函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.5、C【解析】【分析】根据函数的定义进行判断即可.【详解】解:在某一变化过程中,有两个变量x、y,一个量x变化,另一个量y随之变化,当x每取一个值,另一个量y就有唯一值与之相对应,这时,我们把x叫做自变量,y是x的函数,只有选项C中图象所表示的符合函数的意义,故选:C.【点睛】本题考查函数的定义,理解函数的定义,理解自变量与函数值的对应关系是正确判断的前提.6、B【解析】【分析】由爷爷先出发,可以判断C,再根据图象上点的坐标含义分别计算出爷爷与小强的爬山速度,从而可判断A,B,根据图象上点的坐标含义同时可判断D,从而可得答案.【详解】解: 爷爷先出发一段时间后小强再出发,分别表示小强与爷爷的爬山信息,故C不符合题意;由的图象可得:小强爬山的速度为:米/分,由的图象可得:爷爷爬山的速度为:米/分,所以分钟,故A不符合题意;小强爬山的速度是爷爷的2倍,故B符合题意;由图象可得:山的高度是720米,故D不符合题意;故选B【点睛】本题考查的是从函数图象中获取信息,掌握“函数图象上点的坐标含义”是解本题的关键.7、D【解析】【分析】根据函数三种表示方法的特点即可作出判断.【详解】前三个选项的叙述均正确,只有选项D的叙述是错误的,例如一天中的气温随时间的变化是一个函数关系,但此函数关系是无法用函数解析式表示的. 故选:D【点睛】本题考查了函数的三种表示方法,知道三种表示方法的特点是本题的关键.8、D【解析】略9、A【解析】【分析】由图象可得:10分钟到20分钟之间,路程没有变化,可判断①,由甲35分钟时到达目的地,乙40分钟到达,可判断②,分别求解前后两段时间内甲的速度可判断③,由前后两段时间内甲的速度都比乙快,可判断④,从而可得答案.【详解】解:①由图象可得:甲、乙二人第一次相遇后,停留了20﹣10=10(分钟),故①符合题意;②甲在35分时到达,乙在40分时到达,所以甲先到达的目的地,故②符合题意;③甲前面10分钟的速度为:每分钟米,甲在停留10分钟之后的速度为:每分钟米,所以减慢了行走速度,故③不符合题意;④由图象可得:两段路程甲的速度都比乙快,所以甲行走的平均速度要比乙行走的平均速度快,故④符合题意;所以正确的是①②④.故选:A.【点睛】本题考查的是从函数图象中获取信息,理解题意,弄懂图象上点的坐标含义是解本题的关键.10、D【解析】【分析】先求出1千米的耗油量,再求行驶x千米的耗油量,最后求油箱中剩余的油量即可.【详解】解:∵每千米的耗油量为:60×÷100=0.12(升/千米),∴y=60-0.12x,故选:D.【点睛】本题考查了函数关系式,求出1千米的耗油量是解题的关键.二、填空题1、解析式【解析】略2、唯一【解析】略3、##【解析】【分析】将代入f(x)=,求解即可.【详解】解:将代入f(x)=,得:f(2).故答案为:.【点睛】此题考查了函数的代入求值,解题的关键是将代入f(x)=求解.4、【解析】【分析】根据分式有意义的条件即可求得自变量x的取值范围.【详解】有意义的条件自变量x的取值范围是故答案为:【点睛】本题考查了分式有意义的条件,函数的自变量取值范围,掌握分式有意义的条件是解题的关键.5、2【解析】【分析】根据变量与常量的定义:变量是在某一变化过程中,发生变化的量,常量是某一变化过程中,不发生变化的量,进行求解即可【详解】解:∵篱笆的总长为60米,∴S=(30-a)a=30a-a2,∴面积S随一边长a变化而变化,∴S与a是变量,60是常量故答案为:2.【点睛】本题考查了常量与变量的知识,解题的关键是能够根据篱笆总长不变确定定值,然后确定变量.三、解答题1、或.【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于等于0且分母不为0,即可得出自变量的取值范围.【详解】解:要使函数有意义,则, 即①或②,解不等式组①得,解不等式组②得∴自变量取值是或.【点睛】本题考查函数自变量的取值范围,当函数表达式是分式时,必须满足分母不为0,若函数表达式中有二次根式,则也要满足被开方数大于等于0.2、(1)2.5,4.9;(2)5,6.1【解析】【分析】(1)根据公式,得函数解析式,根据自变量的值,得函数值.(2)根据函数值,得相应的自变量的值.【详解】(1)∵s=at2,∴s=×0.8t2=t2.当t=2.5时,s=×2.52=2.5(m),当t=3.5时,s=×3.52=4.9(m).(2)当s=10时, t2=10,解得t=5(s),当s=15时, t2=15,解得t≈6.1(s).【点睛】本题考查了函数值,利用了函数的自变量与函数值的对应关系.3、(1)1800;4;(2)12;150;(3)300km/h;(4)【解析】【分析】(1)初始时刻y=1800,即为两地距离,相遇时两车距离为0,由图像得到相遇时刻;(2)最后到达的为普通列车,根据路程除以时间可得速度;(3)根据动车4小时到达,利用速度=路程÷时间求解即可;(4)由函数图像可知m时刻是动车到达乙地的时刻,用路程除以速度即可.【详解】(1)由图像可知,甲地与乙地相距1800千米,两车出发后4小时相遇;故答案为:1800,4;(2)由函数图像可知,普通列车12小时到达,则速度为1800÷12=150千米/小时故答案为:12;150;.(3)由题意得:动车的速度为: (km/h);(4),∴,,∴点的坐标为.【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.4、(1)离家时间,离家距离;(2)小龙2h后到达离家最远的地方,此时离家30km;(3)5km/h【解析】【分析】(1)在坐标系中横坐标是自变量,纵坐标是因变量,据此求解;(2)根据图象可以得到离家最远时的时间,此时离家的距离,据此即可确定;(3)根据图象可知小龙在第2—4小时,两小时的所走路程为30-20=10km,据此即可确定;【详解】解:(1)在这个变化过程中自变量是离家时间,因变量是离家距离.故答案为:离家时间,离家距离;(2)根据图象可知小龙2h后到达离家最远的地方,此时离家30km;(3)由图象知,当t=4时,s=20,当t=2时,s=30,∴小龙在第2—4小时,两小时的所走路程为30-20=10km,∴小龙骑车的速度为10÷2=5km/h.【点睛】本题主要考查了因变量和自变量,从函数图像获取信息,准确读懂函数图像时解题的关键.5、(1)见解析;(2)当时,随的增大而增大﹔当时,随的增大而减小﹔当时,随的增大而减小﹔(3)或【解析】【分析】(1)由题意利用函数解析式分别求出对应的函数值即可;进而利用描点法画出图象即可;(2)根据题意观察图象可知该函数图象的增减性,以此进行分析即可;(3)根据题意直接利用图象即可解决问题.【详解】解:(1)…-5-4-3-202345……-1421… 补全图象如下:(2)当时,随的增大而增大﹔当时,随的增大而减小﹔当时,随的增大而减小﹔(3)由图象可知不等式的解集为:或.【点睛】本题考查函数图象和性质,能够从表格中获取信息,利用描点法画出函数图象,并结合函数图象解题是关键.
相关试卷
这是一份冀教版八年级下册第二十章 函数综合与测试课后练习题,共22页。
这是一份冀教版八年级下册第二十章 函数综合与测试练习,共22页。试卷主要包含了函数y=的自变量x的取值范围是,函数中,自变量x的取值范围是,函数的自变量x的取值范围是,在函数中,自变量的取值范围是等内容,欢迎下载使用。
这是一份初中数学第二十章 函数综合与测试达标测试,共21页。