冀教版八年级下册第二十章 函数综合与测试同步训练题
展开
这是一份冀教版八年级下册第二十章 函数综合与测试同步训练题,共24页。
冀教版八年级数学下册第二十章函数专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙二人约好同时出发,沿同一路线去某博物馆参加科普活动,如图,x表示的是行走时间(单位:分),y表示的是甲到出发地的距离(单位:米),最后两人都到达了目的地.根据图中提供的信息,下面有四个结论:①甲、乙二人第一次相遇后,停留了10分钟;②甲先到达目的地;③甲停留10分钟之后提高了行走速度;④甲行走的平均速度要比乙行走的平均速度快.其中正确的是( )A.①②④ B.①②③ C.①③④ D.②③④2、甲、乙两人沿同一条路从A地出发,去往100千米外的B地,甲、乙两人离A地的距离(千米)与时间t(小时)之间的关系如图所示,以下说法正确的是( )A.甲的速度是40km/hB.乙的速度是30km/hC.甲出发小时后两人第一次相遇D.甲乙同时到达B地3、下列各图表示y是x的函数的图象是( )A. B.C. D.4、下列曲线中,表示y是x的函数的是( )A. B.C. D.5、洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中,洗衣机内的水量(升)与浆洗一遍的时间(分)之间的关系的图象大致为( )A. B.C. D.6、函数图象是研究函数的重要工具.探索函数性质时,我们往往要经历列表、描点、连线画出函数的图象,然后观察分析图象特征,概括函数性质,小明在探索函数的性质时,根据如下的列表,画出了该函数的图象并进行了观察表现.…………小明根据他的发现写出了以下三个命题:①当时,函数图象关于直线对称;②时,函数有最小值,最小值为;③时,函数的值随点的增大而减小.其中正确的是( )A.①② B.①③ C.②③ D.①②③7、已知一个等腰三角形的腰长为x,底边长为y,周长是10,则底边y关于腰长x之间的函数关系式及定义域为( )A.y=10﹣2x(5<x<10) B.y=10﹣2x(2.5<x<5)C.y=10﹣2x(0<x<5) D.y=10﹣2x(0<x<10)8、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )A.①②③ B.①②④ C.③④ D.①③④9、下列各表达式不是表示y是x的函数的是( )A. B.C. D.10、在函数中,自变量x的取值范围是( )A.x≥﹣1 B.x≠3 C.x>﹣1 D.x≥﹣1且x≠3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知函数,当时,_______;当时,_______.2、在一条笔直的公路上依次有A、B、C三地,A、B两地相距210千米.甲、乙两车分别从A、B两地同时出发匀速前往C地,乙到达C地后先休息30分钟,再以原速的返回到B地,甲到达C地立即停止.当乙返回到B地1.5小时后,甲到达C地.甲、乙两车之间的距离y(千米)与甲车出发的时间x(小时)之间的函数关系如图所示,则下列五个说法:①a=210;②乙车从C地返回B地的速度为90km/h;③甲出发8小时后到达C地;④A、C两地的距离为540km;⑤甲车出发小时后与乙车相遇.其中正确的有_____.3、下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b与下降高度d的关系:d5080100150b25405075写出用d表示b的关系式:_______.4、在、两地之间有汽车站在直线上),甲车由地驶往站,乙车由地驶往地,两车同时出发,匀速行驶.甲、乙两车离站的路程,(千米)与行驶时间(小时)之间的函数图象如图所示,则下列结论:①、两地相距440千米;②甲车的平均速度是60千米时;③乙车行驶11小时后到达地;④两车行驶4.4小时后相遇,其中正确的结论有是___.(填序号)5、汽车以60km/h的速度匀速行驶,行驶路程为 s km,行驶时间为 t h,如表:t/h12345s/km60120180240300可知:路程 =____________(1)在上面这个过程中,变化的量是_______、_________.不变化的量是_____________.(2)试用含t的式子表示s:s=_______.这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.三、解答题(5小题,每小题10分,共计50分)1、在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.我们对函数图像与性质进行探究,下表是该函数y与自变量x的几组对应值,请解答下列问题:x…0…y…m0n…(1)求该函数的解析式,并写出自变量x的取值范围.(2)表中m的值为 ,n的值为 .(3)在如图所示的平面直角坐标系中,画出该函数的图像;(4)结合上述研究:①写出方程的解 .②直接写出关于x的不等式的解集是 .2、实验室甲、乙两人相约一起去距二人所在地的市器材店购买器材.两人都从实验室出发,沿一条笔直的公路匀速前往器材店.乙因有事耽搁就让甲骑摩托车先出发,一段时间后乙开车沿同一路线出发,两人都到达器材店后一起购买器材.设甲行驶的时间为,两人之间的距离为.如图表示两人在前往器材店的路上,与函数关系的部分图像.请你解决以下问题:(1)说明点、点、点的实际意义;(2)求出甲、乙的速度;(3)当__________时,两人之间相距8千米?3、小亮想了解一根弹簧的长度是如何随所挂物体质量的变化而变化的,他把这根弹簧的上端固定,在其下端悬挂物体,下面是小亮测得的弹簧的长度y与所挂物体质量x的几组对应值:所挂物体质量x/kg012345弹簧长度y/cm182226303438(1)上表所反映的变化过程中的两个变量,______是自变量,______是因变量;(请用文字语言描述)(2)请直接写出y与x的关系式______;(3)当弹簧长度为50cm(在弹簧承受范围内)时,求所挂重物的质量.(写出求解过程)4、某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费.月用电量不超过200度时,按0.55元/度计费;月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费.设每户家庭月用电量为x度时,应交电费y元.(1)当月用电量不超过200时,y与x的函数关系式为 ,当月用电量超过200度时,y与x的函数关系式为 .(2)小新家十月份用电量为160度,求本月应交电费多少元?(3)小明家十月份交纳电费117元,求本月用电多少度?5、在一定弹性限度内,弹簧挂上物体后会伸长.现测得一弹簧长度y(cm)与所挂物体质量x(kg)有如下关系:(已知在弹性限度内该弹簧悬挂物体后的最大长度为21cm.)所挂物体质量x/kg0123456弹簧长度y/cm1212.51313.51414.515(1)有下列说法:①x与y都是变量,且x是自变量,y是x的函数;②所挂物体质量为6kg时,弹簧伸长了3cm;③弹簧不挂重物时的长度为6cm;④物体质量每增加1kg,弹簧长度y增加0.5cm.上述说法中错误的是 (填序号)(2)请写出弹簧长度y(cm)与所挂物体质量x(kg)之间的关系式及自变量的取值范围.(3)预测当所挂物体质量为10kg时,弹簧长度是多少?(4)当弹簧长度为20cm时,求所挂物体的质量. -参考答案-一、单选题1、A【解析】【分析】由图象可得:10分钟到20分钟之间,路程没有变化,可判断①,由甲35分钟时到达目的地,乙40分钟到达,可判断②,分别求解前后两段时间内甲的速度可判断③,由前后两段时间内甲的速度都比乙快,可判断④,从而可得答案.【详解】解:①由图象可得:甲、乙二人第一次相遇后,停留了20﹣10=10(分钟),故①符合题意;②甲在35分时到达,乙在40分时到达,所以甲先到达的目的地,故②符合题意;③甲前面10分钟的速度为:每分钟米,甲在停留10分钟之后的速度为:每分钟米,所以减慢了行走速度,故③不符合题意;④由图象可得:两段路程甲的速度都比乙快,所以甲行走的平均速度要比乙行走的平均速度快,故④符合题意;所以正确的是①②④.故选:A.【点睛】本题考查的是从函数图象中获取信息,理解题意,弄懂图象上点的坐标含义是解本题的关键.2、C【解析】【分析】根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由图可得, 甲车出发第小时时距离A地千米,甲车出发第小时时距离A地千米,甲车的速度是千米/小时,故选项A符合题意;乙车出发小时时距离A地千米,乙车速度是千米/小时,故选项B不合题意; 甲车第小时到达地,甲车的速度是千米/小时,则甲车到达地用时小时,则甲车在第小时出发,由图像可得甲,乙两车在第小时相遇,则甲车出发小时两车相遇,故选项正确;甲车行驶千米时,乙车行驶了千米,甲车先到B地,故选项D不合题意; 故选:【点睛】本题主要考查了函数图象信息分析,解答本题的关键是明确题意,利用数形结合的思想解答.3、D【解析】【详解】解:A、不是的函数的图象,此项不符题意;B、不是的函数的图象,此项不符题意;C、不是的函数的图象,此项不符题意;D、是的函数的图象,此项符合题意;故选:D.【点睛】本题考查了函数,熟记函数的定义(一般的,在一个变化过程中,假设有两个变量,如果对于任意一个都有唯一确定的一个和它对应,那么就称是自变量,是的函数)是解题关键.4、C【解析】【分析】根据函数的定义进行判断即可.【详解】解:在某一变化过程中,有两个变量x、y,一个量x变化,另一个量y随之变化,当x每取一个值,另一个量y就有唯一值与之相对应,这时,我们把x叫做自变量,y是x的函数,只有选项C中图象所表示的符合函数的意义,故选:C.【点睛】本题考查函数的定义,理解函数的定义,理解自变量与函数值的对应关系是正确判断的前提.5、B【解析】【分析】根据洗衣机内水量开始为0,注水后水量变多,清洗时水量不变,排水时水量变小,直到水量变为0;由此即可得到答案.【详解】解:解:因为洗衣机工作前洗衣机内无水,所以A,C两选项不正确,被淘汰;又因为洗衣机最后排完水,所以D选项不正确,被淘汰,所以选项B正确.故选:B.【点睛】本题考查了对函数图象的理解能力.解题关键是看函数图象要理解两个变量的变化情况.6、C【解析】【分析】(1)把,代入 求出、,画出函数图像,函数图象关于直线对称,则横纵坐标交换位置,即可判断①;根据图像可判断②③.【详解】把,代入 得:,画出函数图像如图所示:当时,;当时,,故①错误;由图像可得出:②③正确.故选:C.【点睛】函数的图像与性质,根据表格画函数图像,掌握对称的性质是解题的关键.7、B【解析】【分析】根据等腰三角形的定义即三角形的周长公式列出底边y关于腰长x之间的函数关系式,根据三角形的三边关系以及底边大于0,列出不等式组,进而求得定义域.【详解】一个等腰三角形的腰长为x,底边长为y,周长是10,即即解得即解得底边y关于腰长x之间的函数关系式为故选B【点睛】本题考查了等腰三角形的定义,三角形的三边关系,函数解析式,掌握以上知识是解题的关键.8、D【解析】【分析】根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.【详解】解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;火车的长度是150米,故②错误;整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;隧道长是:45×30-150=1200(米),故④正确.故选:D.【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.9、C【解析】略10、D【解析】【分析】根据分式的分母不为零,二次根式被开方数非负即可得到不等式组,解不等式组即可.【详解】由题意得: 解得:且 故选:D【点睛】本题考查了函数有意义的自变量的取值范围,一般地:若解析式中有分式,则分母不为零,若有二次根式,则被开方数非负,其余情况下自变量取值无限制,实际问题要具体情况具体分析.二、填空题1、 3 【解析】【分析】分别将和代入解析式,即可求解.【详解】解:当时,;当时, ,解得: .故答案为:3; .【点睛】本题主要考查了求函数的自变量和函数值,解题的关键是理解并掌握当已知函数解析式时,求函数值就是求代数式的值;函数值是唯一的,而对应的自变量可以是多个.2、①⑤【解析】【分析】根据A、B两地相距210千米得出a的值;根据乙到达C地后先休息30分钟时再以原速的返回到B地,甲到达C地立即停止.当乙返回到B地1.5小时后,甲到达C地.可求出甲车的速度;从而得出乙车的速度;求出A、C两地的距离可得甲到达C地的时间;根据x=3.5时甲、乙两车的距离以及速度可判断④.【详解】解:∵A、B两地相距210千米.∴a=210,①正确;由图象得:乙到达C地后先休息30分钟,即3.5小时时,甲距C地360千米,再以原速的返回到B地,甲到达C地立即停止.可知回时所用的时间为:小时,当乙返回到B地1.5小时后,甲到达C地.可知甲在3.5小时时开始运动,经过小时到达C地,故甲车的速度为:,则3小时时,两车的距离为:,设乙车的速度为,则,解得:,∴乙车从C地返回B地的速度为:120×=80(千米/小时),②错误;B、C两地的距离为:120×3=360(千米),∴A、C两地的距离为:360+210=570(千米),④错误;∴570÷60=(小时),即甲出发小时后到达C地,③错误;∵x=3.5时,甲、乙两车之间的距离是360千米,∴360÷(80+60)=(小时),即再行驶小时两车相遇,+3.5=(小时),即甲车出发小时后与乙车相遇.⑤正确.∴其中正确的有①⑤.故答案为:①⑤.【点睛】本题考查了函数图象信息读取,准确读出图象含义是解题的关键.3、【解析】【分析】根据表格可得当下降高度为50时,弹跳高度为25,当下降高度为80时,弹跳高度为40,由此可得前后弹跳高度差为15,高度差为30,进而问题可求解.【详解】解:由表格可任取两个值可得高度差与弹跳差的比值为:,∴;故答案为.【点睛】本题主要考查函数关系,解题的关键是根据表格找准等量关系即可.4、①②③④【解析】【分析】根据题意结合图象确定符合甲乙行驶路线的函数图象,然后依次进行求解判断即可得出【详解】解:A、B两地相距:(千米),故①正确,甲车的平均速度:(千米小时),故②正确,乙车的平均速度:千米小时,(小时),乙车行驶11小时后到达A地,故③正确,设t小时相遇,则有:,解得:(小时),两车行驶4.4小时后相遇,故④正确,故答案为:①②③④.【点睛】题目主要考查根据函数图象获取信息进行求解及一元一次方程的应用,理解题意,结合图象确定符合甲乙行驶路线的函数图象是解题关键.5、 速度×时间 时间t 路程s 速度60km/h 60 t s t【解析】略三、解答题1、 (1),自变量取任意实数(2),(3)见解析(4)①;②或【解析】【分析】(1)选择两组数据代入函数得到一个二元一次方程,解出a,b即可求出解析式;(2)根据(1)得到的解析式代入m,n对应的x即可;(3)描点法标记好每个点,再用光滑的曲线连接各点即可得到函数图像.【详解】解:(1)由表格得,,在函数上,将,代入,得:,解得:,该函数解析式为:,自变量取任意实数;(2)当时,,即,当时,,即,故答案为:,;(3)图象如图(4)由图象可知,方程的解为不等式的解集为:,故答案是:,.【点睛】本题考查新函数解析式的求法、根据自变量求因变量、函数图像的绘制,掌握这些是本题关键.2、 (1)点所表示的含义为:甲先走20分钟,此时甲乙相距10千米,表示的含义为:乙行驶30分钟追上了甲,此时甲乙两人相遇,表示的含义为:乙行驶70分钟,此时两人相距千米.(2)甲的速度为每分钟千米,乙的速度为每分钟千米.(3)当分钟或分钟或分钟或分钟时,两人相距8千米.3、(1)所挂物体质量,弹簧长度;(2)y=4x+18;(3)8kg【解析】【分析】(1)因为表中的数据主要涉及到弹簧的长度和所挂物体的质量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;(2)利用表格中数据的变化进而得出答案;(3)由(2)中关系式,可求当弹簧长度为50cm(在弹簧承受范围内)时,所挂重物的质量.【详解】解:(1)上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;故答案为:所挂物体质量,弹簧长度;(2)由表格可得:当所挂物体重量为1千克时,弹簧长4厘米;当不挂重物时,弹簧长18厘米,则y与x的关系式为:y=4x+18;故答案为:y=4x+18;(3)当弹簧长度为50cm(在弹簧承受范围内)时,50=4x+18,解得x=8,答:所挂重物的质量为8kg.【点睛】本题考查了函数的表示方法,本题需仔细分析表中的数据,进而解决问题.明确变量及变量之间的关系是解好本题的关键.4、(1),;(2)88;(3)【解析】【分析】(1)时,电费就是0.55乘以相应度数;时,电费超过200的度数;(2)把160代入得到的函数求解即可;(3)把117代入得到的函数求解即可.【详解】解:(1)当时,与的函数解析式是;当时,与的函数解析式是,即;故答案为:,(2)(元)答:小明家4月份应交电费145元.(3)因为小明家5月份的电费超过110元,所以把代入中,得.答:小明家5月份用电210度.【点睛】本题考查一次函数的应用,正确的列出函数关系是解题的关键.5、 (1)③④;(2)y=0.5x+12(0≤x≤18);(3)弹簧长度是17cm;(4)所挂物体的质量为16kg.【解析】【分析】(1)由表格可得弹簧原长以及所挂物体每增加1kg弹簧伸长的长度,可得答案;(2)由(1)中结论可求出弹簧总长y(cm)与所挂重物x(kg)之间的函数关系式;(3)令x=10时,求出y的值即可;(4)令y=20时,求出x的值即可.(1)解: x与y都是变量,且x是自变量,y是x的函数,故①正确;当x=6时,y=15,当x=0时,y=12,15-12=3,故②正确,③错误;在弹性限度内,物体质量每增加1kg,弹簧长度y增加0.5cm,但是当超出弹性限度后,弹簧长度就不再增加,故④错误;故答案为:③④;(2)解:弹簧长度y(cm)与所挂物体质量x(kg)之间的关系式为y=0.5x+12,∵在弹性限度内该弹簧悬挂物体后的最大长度为21cm.∴0.5x+12≤21,解得:x≤18,∴y=0.5x+12(0≤x≤18);(3)解:当x=10kg时,代入y=0.5x+12,解得y=17cm,即弹簧长度是17cm;(4)当y=20cm时,代入y=0.5x+12,解得x=16,即所挂物体的质量为16kg.【点睛】本题考查了函数的关系式及函数值,关键在于根据图表信息列出等式,然后变形为函数的形式.
相关试卷
这是一份冀教版八年级下册第二十章 函数综合与测试一课一练,共21页。试卷主要包含了在下列图象中,是的函数的是,下列图像中表示是的函数的有几个等内容,欢迎下载使用。
这是一份数学八年级下册第二十章 函数综合与测试巩固练习,共21页。试卷主要包含了下图中表示y是x函数的图象是,函数y=的自变量x的取值范围是,函数中,自变量x的取值范围是等内容,欢迎下载使用。
这是一份冀教版第二十章 函数综合与测试习题,共21页。