开学活动
搜索
    上传资料 赚现金

    2022年最新强化训练冀教版八年级数学下册第十九章平面直角坐标系专题练习试题(精选)

    2022年最新强化训练冀教版八年级数学下册第十九章平面直角坐标系专题练习试题(精选)第1页
    2022年最新强化训练冀教版八年级数学下册第十九章平面直角坐标系专题练习试题(精选)第2页
    2022年最新强化训练冀教版八年级数学下册第十九章平面直角坐标系专题练习试题(精选)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第十九章 平面直角坐标系综合与测试习题

    展开

    这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试习题,共27页。试卷主要包含了在平面直角坐标系中,点P,在平面直角坐标系xOy中,点A,下列命题中,是真命题的有等内容,欢迎下载使用。
    八年级数学下册第十九章平面直角坐标系专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、点Px轴的距离是3,到y轴的距离是2,且点Py轴的左侧,则点P的坐标是(  )A.(-2,3)或(-2,-3) B.(-2,3)C.(-3,2)或(-3,-2) D.(-3,2)2、第24届冬季奥林匹克运动会将于2022年2月4日~20日在北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是(        A.离北京市100千米 B.在河北省C.在怀来县北方 D.东经114.8°,北纬40.8°3、在平面直角坐标系中,点所在的象限是(       A.第一象限 B.第二象限 C.第三象限 D.第四象限4、点向上平移2个单位后与点关于y轴对称,则       ).A.1 B. C. D.5、在平面直角坐标系中,点P(-2,3)在(  )A.第一象限 B.第二象限 C.第三象限 D.第四象限6、在平面直角坐标系xOy中,点A(0,2),Ba,0),Cmn)(n>0).若△ABC是等腰直角三角形,且ABBC,当0<a<1时,点C的横坐标m的取值范围是(   A.0<m<2 B.2<m<3 C.m<3 D.m>37、下列命题中,是真命题的有(       ①以1、为边的三角形是直角三角形,则1、是一组勾股数;②若一直角三角形的两边长分别是5、12,则第三边长为13;③二次根式是最简二次根式;④在实数0,﹣0.3333……,,0.020020002,,0.23456…,中,无理数有3个;⑤东经113°,北纬35.3°能确定物体的位置.A.①②③④⑤ B.①②④⑤ C.②④⑤ D.④⑤8、将含有角的直角三角板按如图所示的方式放置在平面直角坐标系中,x轴上,若,将三角板绕原点O逆时针旋转,每秒旋转,则第2022秒时,点A的对应点的坐标为(       A. B. C. D.9、点与点Q关于y轴对称,则点Q的坐标为(       A. B. C. D.10、下列命题为真命题的是(       A.过一点有且只有一条直线与已知直线平行 B.在同一平面内,若,则C.的算术平方根是9 D.点一定在第四象限第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,把点P(a−1,5)向左平移3个单位得到点Q(2−2b,5),则2a+4b+3的值为______.2、在平面直角坐标系中,点A(10,0)、B(0,3),以AB为边在第一象限作等腰直角ABC,则点C的坐标为_______.3、在平面直角坐标系中,等腰直角和等腰直角的位置如图所示,顶点轴上,.若点的坐标为,则线段的长为__________.4、是平面直角坐标系中的两点,线段长度的最小值为 __.5、今年清明假期164万游客游园,玉渊潭、动物园、天坛公园游客最多,如图是玉渊潭公园部分景点的分布示意图,在图中,分别以正东、正北方向为轴、轴的正方向建立平面直角坐标系,当表示西桥的点的坐标为,表示中堤桥的点的坐标为时,表示留春园的点的坐标为__.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,点BCD的坐标分别是什么? 2、如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).(1)作出ABC关于y轴的对称图形(2)写出点的坐标;(3)若坐标轴上存在一点E,使EBC是以BC边为底边的等腰三角形,直接写出点E的坐标.(4)在y轴上找一点P,使PAPC的长最短.3、如图,在平面直角坐标系中,描出点(1)在平面直角坐标系中画出,则的面积是            (2)若点D与点C关于y轴对称,则点D的坐标为            (3)求线段OC的长;(4)已知Px轴上一点,若的面积为4,求点的坐标.4、如图,点Ax轴负半轴上一点,点By轴正半轴上一点,,且ab满足有意义.(1)若,求AB的长;(2)如图1,点C与点A关于y轴对称,点Px轴上(点P在点A左边),以PB为直角边在PB的上方作等腰直角△PDB,试猜想ADPC的关系并证明;(3)如图2,点MAB中点,点E为射线OA上一点,点F为射线BO上一点,且,设,请求出EF的长度(用含mn的代数式表示).5、如图,在平面直角坐标系xOy中有一个,其中点(1)若关于x轴对称,直接写出三个顶点的坐标;(2)作关于直线m的对称图形,并写出的坐标. -参考答案-一、单选题1、A【解析】【分析】根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.【详解】解:∵点Py轴左侧,∴点P在第二象限或第三象限,∵点Px轴的距离是3,到y轴距离是2,∴点P的坐标是(-2,3)或(-2,-3),故选:A.【点睛】此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.2、D【解析】【分析】若将地球看作一个大的坐标系,每个位置同样有对应的横纵坐标,即为经纬度.【详解】离北京市100千米、在河北省、在怀来县北方均表示的是位置的大概范围,东经114.8°,北纬40.8°为准确的位置信息.故选:D.【点睛】本题考查了实际问题中的坐标表示,理解经纬度和横纵坐标的本质是一样的是解题的关键.3、D【解析】【分析】根据第四象限内横坐标大于零,纵坐标小于零,可得答案.【详解】解:点所在的象限是第四象限,故选:D.【点睛】本题考查了点的坐标,熟记各象限内点的坐标特征是解题关键.4、D【解析】【分析】利用平移及关于y轴对称点的性质即可求解.【详解】解:把向上平移2个单位后得到点∵点与点关于y轴对称,故选:D.【点睛】本题考查坐标与图形变化平移、轴对称的性质及负整数指数幂,解题关键是掌握平移、轴对称的性质及负整数指数幂.5、B【解析】【分析】根据点横纵坐标的正负分析得到答案.【详解】解:点P(-2,3)在第二象限,故选:B【点睛】此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键.6、B【解析】【分析】过点CCDx轴于D,由“AAS”可证AOB≌△BDC,可得AO=BD=2,BO=CD=n=a,即可求解.【详解】解:如图,过点CCDx轴于D∵点A(0,2),AO=2,∵△ABC是等腰直角三角形,且AB=BC∴∠ABC=90°=∠AOB=∠BDC∴∠ABO+∠CBD=90°=∠ABO+∠BAO∴∠BAO=∠CBDAOBBDC中,∴△AOB≌△BDCAAS),AO=BD=2,BO=CD=n=a∴0<a<1,OD=OB+BD=2+a=m ∴2<m<3,故选:B【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.7、D【解析】【分析】根据勾股数的定义、勾股定理、最简二次根式定义、无理数定义、有序数对定义分别判断.【详解】解:①以1、为边的三角形是直角三角形,但1、不是勾股数,故该项不是真命题;②若一直角三角形的两边长分别是5、12,则第三边长为13或,故该项不是真命题;③二次根式不是最简二次根式,故该项不是真命题;④在实数0,﹣0.3333……,,0.020020002,,0.23456…,中,无理数有3个,故该项是真命题;⑤东经113°,北纬35.3°能确定物体的位置,故该项是真命题;故选:D.【点睛】此题考查了真命题的定义:正确的命题是真命题,正确掌握勾股数的定义、勾股定理、最简二次根式定义、无理数定义、有序数对定义是解题的关键.8、C【解析】【分析】求出第1秒时,点A的对应点的坐标为(0,4),由三角板每秒旋转,得到此后点的位置6秒一循环,根据2022除以6的结果得到答案.【详解】解:过点AACOBC,∠AOB=A,∠AOB=,将三角板绕原点O逆时针旋转,每秒旋转∴第1秒时,点A的对应点的坐标为∵三角板每秒旋转∴此后点的位置6秒一循环,∴则第2022秒时,点A的对应点的坐标为故选:C【点睛】此题考查了坐标与图形的变化中的旋转以及规律型中点的坐标,根据每秒旋转的角度,找到点的位置6秒一循环是解题的关键.9、A【解析】【分析】根据关于y轴对称,纵不变,横相反的原理确定即可.【详解】∵关于y轴对称,纵不变,横相反,∴点与点Q关于y轴对称,点Q的坐标为(-3,2),故选A.【点睛】本题考查了坐标系中点的对称问题,熟练掌握对称点坐标的变化规律是解题的关键.10、B【解析】【分析】直接利用平行线的判定和性质、算术平方根的定义以及点的坐标特点分别判断即可.【详解】解:A、过直线外一点有且只有一条直线与已知直线平行,原命题是假命题;B、在同一平面内,如果abbc,则a//c,原命题是真命题;C、的算术平方根是3,原命题是假命题;D、若a=0,则−a2=0,则点(1,−a2)在x轴上,故原命题是假命题;故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题1、15【解析】【分析】直接利用平移中点的变化规律求得a+2b=6,再整体代入求解即可.【详解】解:∵把点P(a−1,5)向左平移3个单位得到点Q(2−2b,5),a-1-3=2-2b,即a+2b=6,∴2a+4b+3=2(a+2b)+3=15,故答案为:15.【点睛】本题考查了坐标系中点、线段的平移规律以及代数式的求值.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.2、【解析】【分析】根据题意作出图形,分类讨论,根据三角形全等的性质与判定即可求得点的坐标【详解】解:如图,为直角顶点时,则,轴,,同理可得根据三线合一可得的中点,则综上所述,点C的坐标为故答案为:【点睛】本题考查了等腰直角三角形的性质与判定,坐标与图形,全等三角形的性质与判定,分类讨论是解题的关键.3、【解析】【分析】如图,过点作一条垂直于轴的直线,过点交点为,过点交点为;有题意可知,由D点坐标可知的长度,,进而可得结果.【详解】解:如图, 过点作一条垂直于轴的直线,过点交点为,过点交点为中, D点坐标可知故答案为:【点睛】本题考查了全等三角形的判定与性质,坐标系中点的坐标等知识.解题的关键是找出所求线段的等价线段的值.4、3【解析】【分析】画出图形,根据垂线段最短解答即可.【详解】解:如图.轴上.线段的长度为点到y轴上点的距离.若使得线段长度的最小,由垂线段最短,可知当A时,即轴,线段长度最小.此时最小值为3.故答案为:3.【点睛】本题考查了坐标与图形,垂线段最短,数形结合是解答本题的关键.5、【解析】【分析】根据表示西桥的点的坐标为,表示中堤桥的点的坐标为建立平面直角坐标系,确定坐标原点的位置,进而可确定表示留春园的点的坐标.【详解】根据题意可建立如下所示平面直角坐标系,则表示留春园的点的坐标为故答案为【点睛】此题考查坐标确定位置,解题的关键就是确定坐标原点和轴的位置.三、解答题1、B(-2,3),C(4,-3),D(-1,-4)【解析】2、 (1)作图见解析(2)(3)(4)作图见解析【解析】【分析】(1)分别确定关于轴的对称点 再顺次连接即可;(2)根据图1的位置可得其坐标;(3)根据网格图的特点画的垂直平分线,则垂直平分线与坐标轴的交点符合要求;(4)由(1)得:关于轴对称,所以连接轴于 可得是符合要求的点.(1)解:如图1,是所求作的三角形,(2)解:由图1可得:(3)解:如图1,为等腰三角形,且为底边,根据网格图的特点画的垂直平分线交坐标轴于 (4)解:如图2,由(1)得:关于轴对称,所以连接轴于 此时最短,所以即为所求作的点.【点睛】本题考查的是轴对称的作图,线段垂直平分线的性质,等腰三角形的定义,利用轴对称的性质确定线段和的最小值,熟练的应用轴对称的性质是解本题的关键.3、 (1)画图见解析,4;(2)(-4,3);(3)5;(4)(10,0)或(-6,0)【解析】【分析】(1)根据ABC三点的坐标,在坐标系中描出ABC,然后顺次连接ABC即可得到答案;然后根据ABC的面积等于其所在的长方形面积减去周围三个三角形面积求解即可;(2)根据关于y轴对称的两个点的坐标特征:纵坐标相同,横坐标互为相反数求解即可;(3)过C点作轴于点D,则,由勾股定理求解即可.(4)设P点坐标为(m,0),则,由的面积为4,得到,由此求解即可.(1)解:如图所示,ABC即为所求;故答案为:4;(2)解:∵点D与点C关于y轴对称,点C的坐标为(4,3),∴点D的坐标为(-4,3),故答案为:(-4,3);(3)解:连接OCC点作轴于点D中,(4)解:∵x轴上一点,∴可设P点坐标为(m,0),的面积为4,P点坐标为(10,0)或(-6,0).【点睛】本题主要考查了在坐标系中描点、连线,关于y轴对称的点的坐标特征,两点距离公式,三角形面积,绝对值方程,熟知相关知识是解题的关键.4、 (1)(2)AD=PC,证明见解析;(3)【解析】【分析】(1) 根据二次根式的非负性可求得,再结合勾股定理可求得AB的值;(2)连接BC,只需要证明△PBC≌△DBA,即可证明AD=PC(3)分情况讨论,当时,过点MMNx轴,作MGy轴,可证明△MEN≌△MFG,从而可得ME=MFEN=GF,可借助mn的代数式ENMN,从而表示ME,继而可得EF,画图可知,其它两种情况同理可得.(1)解:∵ab满足有意义,,即(2)解:AD=PC,证明如下:连接BC,由(1)可得OA=OB=OC∵两个坐标轴垂直,∴∠OAB=∠ABO=∠OBC=∠OCB=45°,AB=BC,∠ABC=90°,又∵△PDB为等腰直角三角形,BP=BD,∠DBP=90°,∴∠ABD=∠DBP+∠ABP=∠ABC+∠ABP=∠BPC在△PBC和△DBA ∴△PBC≌△DBASASAD=PC(3)时, 过点MMNx轴,作MGy轴,∴∠ANM=∠MGB=90°,由(2)可知∠OAB=∠ABO=45°,∴∠AMN=∠BMG=90°,AN=MN,MG=BG,∠NMG=90°,MAB的中点AM=BM∴△ANM≌△MGBSSS),AN=MN=MG=BG∵∠EMF=90°,∴∠EMN=90°-∠NMF=∠GMF在△MEN和△MFG ∴△MEN≌△MFGSAS),EM=MFEN=GF,RtEMN中,根据勾股定理RtEMF中,根据勾股定理时同理可证【点睛】本题考查勾股定理,全等三角形的性质和判定,坐标与图形,二次根式的非负性等.(1)中能根据二次根式的非负性得出a=b=c是解题关键;(2)中正确构造辅助线,作出全等三角形是解题关键;(3)能借助全等三角形和线段的和差正确表示线段的长度是解题关键.5、(1);(2)作图见解析;【解析】【分析】(1)根据关于x轴对称横坐标不变,纵坐标互为相反数即可解决问题;(2)作出ABC的对应点A2B2C2即可;【详解】解:(1)∵三个顶点坐标分别为:三个顶点坐标分别为:(2)如图所示:的坐标分别为:【点睛】本题考查作图-轴对称变换,解题的关键是解题意,灵活运用所学知识解决问题,属于中考常考题型. 

    相关试卷

    冀教版八年级下册第十九章 平面直角坐标系综合与测试练习题:

    这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试练习题,共26页。试卷主要包含了若点P,已知点和点关于轴对称,则的值为,在平面直角坐标系中,点P等内容,欢迎下载使用。

    冀教版八年级下册第十九章 平面直角坐标系综合与测试同步练习题:

    这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试同步练习题,共29页。试卷主要包含了已知点P的坐标为,如图是象棋棋盘的一部分,如果用,已知点和点关于轴对称,则的值为,在平面直角坐标系中,点A等内容,欢迎下载使用。

    初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试复习练习题:

    这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试复习练习题,共23页。试卷主要包含了如图,,且点A,如图是象棋棋盘的一部分,如果用,点P关于y轴对称点的坐标是.等内容,欢迎下载使用。

    英语朗读宝
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map