![难点详解冀教版八年级数学下册第十九章平面直角坐标系专项攻克试题(含详细解析)01](http://www.enxinlong.com/img-preview/2/3/12765810/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点详解冀教版八年级数学下册第十九章平面直角坐标系专项攻克试题(含详细解析)02](http://www.enxinlong.com/img-preview/2/3/12765810/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点详解冀教版八年级数学下册第十九章平面直角坐标系专项攻克试题(含详细解析)03](http://www.enxinlong.com/img-preview/2/3/12765810/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中冀教版第十九章 平面直角坐标系综合与测试同步达标检测题
展开八年级数学下册第十九章平面直角坐标系专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、点A的坐标为,则点A在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2、如图,在平面直角坐标系中,将等边绕点A旋转180°,得到,再将绕点旋转180°,得到,再将绕点旋转180°,得到,…,按此规律进行下去,若点,则点的坐标为( )
A. B. C. D.
3、如图,在平面直角坐标系中,可以看作是经过若干次图形的变化(平移、轴对称)得到的,下列由得到的变化过程错误的是( )
A.将沿轴翻折得到
B.将沿直线翻折,再向下平移个单位得到
C.将向下平移个单位,再沿直线翻折得到
D.将向下平移个单位,再沿直线翻折得到
4、在平面直角坐标系中,点P(-2,3)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5、在平面直角坐标系xOy中,点A(0,2),B(a,0),C(m,n)(n>0).若△ABC是等腰直角三角形,且AB=BC,当0<a<1时,点C的横坐标m的取值范围是( )
A.0<m<2 B.2<m<3 C.m<3 D.m>3
6、在平面直角坐标系坐标中,第二象限内的点A到x轴的距离是3,到y轴的距离是2,则A点坐标为( )
A.(﹣3,2) B.(﹣2,3) C.(2,﹣3) D.(3,﹣2)
7、在平面直角坐标系中,所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
8、若点在轴上,则点的坐标为( )
A. B. C. D.
9、在下列说法中,能确定位置的是( )
A.禅城区季华五路 B.中山公园与火车站之间
C.距离祖庙300米 D.金马影剧院大厅5排21号
10、在平面直角坐标系中,点关于轴的对称点的坐标是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在平面直角坐标系中,一个长方形ABCD三个顶点的坐标分别为A(1,2),B(1,﹣4),D(﹣3,2),则点C坐标为 _____.
2、在平面直角坐标系中,点A(10,0)、B(0,3),以AB为边在第一象限作等腰直角△ABC,则点C的坐标为_______.
3、如图,在中,,顶点A的坐标为,P是上一动点,将点P绕点逆时针旋转,若点P的对应点恰好落在边上,则点的坐标为________.
4、已知点,是关于x轴对称的点,______.
5、中国象棋是一个有悠久历史的游戏.如图的棋盘上,可以把每个棋子看作是恰好在某个正方形顶点上的一个点,若棋子“帅”对应的数对,棋子“象”对应的数对,则图中棋盘上“卒”对应的数对是_______
三、解答题(5小题,每小题10分,共计50分)
1、如图1,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且+(a+2b﹣4)2=0.
(1)在坐标轴上存在一点M,使COM的面积=ABC的面积,求出点M的坐标;
(2)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分∠AOP,OF⊥OE.当点P运动时,的值是否会改变,若不变,求其值;若改变,说明理由.
2、如图,若三角形是由三角形平移后得到的,且三角形中任意一点经过平移后的对应点为,,,.
(1)画出三角形;
(2)写出点的坐标 ;
(3)直接写出三角形的面积 ;
(4)点在轴上,若三角形的面积为6,直接写出点的坐标 .
3、作图题:如图,在平面直角坐标系中,的顶点均在正方形网格的格点上.
(1)画出关于x轴对称的图形并写出顶点,的坐标;
(2)已知P为y轴上一点,若与的面积相等,请直接与出点P的坐标.
4、如图,在方格纸中,已知顶点在格点处的△ABC,请画出将△ABC绕点C旋转180°得到的△A'B'C'.(需写出△A'B'C'各顶点的坐标).
5、如图,在平面直角坐标系中,边长为4的正方形在第一象限内,点、分别在轴、轴上,设点是轴上异于点、的点,过点作∠MBN=45°,的另一边一定在边的左边或上方且与轴交于点,设.
(1)直接写出的范围;
(2)若点为轴上的动点,结合图形,求(用含的式子表示);
(3)当点为轴上的动点时,求的周长的最小值,并说明此时点的位置.
-参考答案-
一、单选题
1、A
【解析】
【分析】
应先判断出点的横纵坐标的符号,进而判断点所在的象限.
【详解】
解:由题意,
∵点A的坐标为,
∴点A在第一象限;
故选:A
【点睛】
本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
2、C
【解析】
【分析】
根据题意先求得的坐标,进而求得的坐标,发现规律,即可求得的坐标.
【详解】
解:∵是等边三角形,,将等边绕点A旋转180°,得到,
∴
,
则
同理可得,
……,
即
故选C
【点睛】
本题考查了等边三角形的性质,旋转的性质,含30度角的直角三角形的性质,勾股定理,坐标与图形,找到规律是解题的关键.
3、C
【解析】
【分析】
根据坐标系中平移、轴对称的作法,依次判断四个选项即可得.
【详解】
解:A、根据图象可得:将沿x轴翻折得到,作图正确;
B、作图过程如图所示,作图正确;
C、如下图所示为作图过程,作图错误;
D、如图所示为作图过程,作图正确;
故选:C.
【点睛】
题目主要考查坐标系中图形的平移和轴对称,熟练掌握平移和轴对称的作法是解题关键.
4、B
【解析】
【分析】
根据点横纵坐标的正负分析得到答案.
【详解】
解:点P(-2,3)在第二象限,
故选:B.
【点睛】
此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键.
5、B
【解析】
【分析】
过点C作CD⊥x轴于D,由“AAS”可证△AOB≌△BDC,可得AO=BD=2,BO=CD=n=a,即可求解.
【详解】
解:如图,过点C作CD⊥x轴于D,
∵点A(0,2),
∴AO=2,
∵△ABC是等腰直角三角形,且AB=BC,
∴∠ABC=90°=∠AOB=∠BDC,
∴∠ABO+∠CBD=90°=∠ABO+∠BAO,
∴∠BAO=∠CBD,
在△AOB和△BDC中,
,
∴△AOB≌△BDC(AAS),
∴AO=BD=2,BO=CD=n=a,
∴0<a<1,
∵OD=OB+BD=2+a=m,
∴
∴2<m<3,
故选:B.
【点睛】
本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.
6、B
【解析】
【分析】
根据第二象限内点的坐标特征以及点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值解答.
【详解】
解:第二象限的点到轴的距离是3,到轴的距离是2,
点的横坐标是,纵坐标是3,
点的坐标为.
故选:B.
【点睛】
本题考查了点的坐标,解题的关键是熟记点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值.
7、D
【解析】
【分析】
先判断出点的横纵坐标的符号,进而判断点所在的象限.
【详解】
解:∵点的横坐标3>0,纵坐标-4<0,
∴点P(3,-4)在第四象限.
故选:D.
【点睛】
本题考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
8、B
【解析】
【分析】
根据y轴上的点的坐标特点可得a+2=0,再解即可.
【详解】
解:由题意得:a+2=0,
解得:a=-2,
则点P的坐标是(0,-2),
故选:B.
【点睛】
此题主要考查了点的坐标,关键是掌握y轴上的点的横坐标为0.
9、D
【解析】
【分析】
根据确定位置的方法逐一判处即可.
【详解】
解:A、禅城区季华五路,确定了路线,没能确定准确位置,故不符合题意;
B、中山公园与火车站之间,没能确定准确位置,故不符合题意;
C、距离祖庙300米,有距离但没有方向,故不符合题意;
D、金马影剧院大厅5排21号,确定了位置,故符合题意.
故选:D
【点睛】
本题考查了位置的确定,熟练掌握常见的确定位置的方法:①用有序数对确定物体位置;②用方向和距离来确定物体的位置.
10、B
【解析】
【分析】
根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.
【详解】
解:点P(2,-1)关于x轴的对称点的坐标为(2,1),
故选:B.
【点睛】
此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律.
二、填空题
1、(﹣3,﹣4)
【解析】
【分析】
根据长方形的性质求出点C的横坐标与纵坐标,即可得解.
【详解】
如图,
∵A(1,2),B(1,﹣4),D(﹣3,2),
∴点C的横坐标与点D的横坐标相同,为﹣3,
点C的纵坐标与点B的纵坐标相同,为﹣4,
∴点D的坐标为(﹣3,﹣4).
故答案为:(﹣3,﹣4).
【点睛】
本题考查了坐标与图形性质,主要利用了矩形的对边平行且相等的性质,作出图形更形象直观.
2、
【解析】
【分析】
根据题意作出图形,分类讨论,根据三角形全等的性质与判定即可求得点的坐标
【详解】
解:如图,
当为直角顶点时,则,
作轴,
又
,
同理可得
根据三线合一可得是的中点,则
综上所述,点C的坐标为
故答案为:
【点睛】
本题考查了等腰直角三角形的性质与判定,坐标与图形,全等三角形的性质与判定,分类讨论是解题的关键.
3、
【解析】
【分析】
过点作轴,垂足为,证明,可得的长度,进而求得点的坐标.
【详解】
解:如图,过点作轴,垂足为,
将点P绕点逆时针旋转,点P的对应点恰好落在边上,
,
,
顶点A的坐标为,
是等腰直角三角形
故答案为:
【点睛】
本题考查了全等三角形的性质与判定,坐标与图形,旋转的性质,等腰三角形的性质与判定,添加辅助选构造全等是解题的关键.
4、3
【解析】
【分析】
根据轴对称的性质得到b=-1,a+1=3,求出a的值代入计算即可.
【详解】
解:∵点,是关于x轴对称的点,
∴b=-1,a+1=3,
解得a=2,
2-(-1)=3,
故答案为:3.
【点睛】
此题考查了关于x轴对称的性质:横坐标相等,纵坐标互为相反数,解题的关键是熟记轴对称的性质.
5、
【解析】
【分析】
“帅”对应的数对(1,0),“象”对应的数对(3,−2),可建立平面直角坐标系;如图,以“马”为原点,连接“马”、“帅”为x轴,垂直于x轴并过“马”为y轴;进而确定“卒”对应的数对.
【详解】
解:由题意中的“帅”与“象”对应的数对,建立如图的直角坐标系
∴可知“卒”对应的数对为;
故答案为:.
【点睛】
本题考查了有序数对与平面直角坐标系中点的位置.解题的关键在建立正确的平面直角坐标系.
三、解答题
1、 (1)或
(2)2
【解析】
【分析】
(1)根据算术平方根的非负性,完全平方的非负性,求得的值,进而求得的坐标,分类讨论点在轴或轴上,根据三角形的面积公式进行计算即可;
(3)的值是定值,由平行线的性质和角平分线的性质可得∠OPD=2∠DOE,即可求解.
(1)
+(a+2b﹣4)2=0.
解得
又C(﹣1,2)
①若点在轴上时,设
COM的面积=ABC的面积,
解得
②若点在轴上时,设
COM的面积=ABC的面积,
解得
综上所述,点M的坐标为或
(2)
的值不变,理由如下:
∵CD⊥y轴,AB⊥y轴,
∴∠CDO=∠DOB=90°,
∴AB∥CD,
∴∠OPD=∠POB.
∵OF⊥OE,
∴∠POF+∠POE=90°,∠BOF+∠AOE=90°,
∵OE平分∠AOP,
∴∠POE=∠AOE,
∴∠POF=∠BOF,
∴∠OPD=∠POB=2∠BOF.
∵∠DOE+∠DOF=∠BOF+∠DOF=90°,
∴∠DOE=∠BOF,
∴∠OPD=2∠BOF=2∠DOE,
∴=2.
【点睛】
本题考查了非负性,二元一次方程组,三角形面积公式,平行线的性质等知识,解决问题的关键是灵活运用所学知识解决问题,学会利用分类讨论思想解决问题.
2、 (1)见解析
(2)
(3)2.5
(4)或
【解析】
【分析】
(1)利用平移变换的性质分别作出A,B,C的对应点A1,B1,C1即可.
(2)根据点A1的位置写出坐标即可.
(3)利用分割法把三角形面积看成矩形面积减去周围三个三角形面积即可.
(4)设M(m,0),构建方程求出m即可.
(1)
如图,画出三角形即为所求.
(2)
点的坐标.
故答案为:;
(3)
直接写出三角形的面积,
故答案为:2.5.
(4)
设,则有,
解得,
或.
故答案为:或.
【点睛】
本题考查坐标与图形变化-平移,三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题.
3、 (1)作图见解析,A1(0,-1),C1(4,-4)
(2)(0,6)或(0,-4)
【解析】
【分析】
(1)分别作出A,B,C的对应点A1,B1,C1即可.
(2)设P(0,m),构建方程求解即可.
(1)
解:作出△ABC关于x轴对称的△A1B1C1如图所示.
△A1B1C1顶点坐标为:A1(0,-1),C1(4,-4).
(2)
设P(0,m),
由题意,,
解得m=6或-4,
∴点P的坐标为(0,6)或(0,-4).
【点睛】
本题考查作图-轴对称变换三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
4、A'(-1,-3),B'(1,-1),C'(-2,0),画图见解析.
【解析】
【分析】
先画出点A,B关于点C中心对称的点A',B',再连接A',B',C即可解题.
【详解】
解: A关于点C中心对称的点A'(-1,-3),B关于点C中心对称的点B'(1,-1),C关于点C中心对称的点C'(-2,0),如图,△A'B'C'即为所求作图形.
【点睛】
本题考查中心对称图形,是基础考点,掌握相关知识是解题关键.
5、 (1)或
(2)或
(3)只有当点在轴的正半轴上且在点的左边时, 的周长取得最小值且为8.
【解析】
【分析】
(1)先确定点在轴上的范围,再确定的范围即可;
(2)分类讨论,结合平行线的性质,求出或的度数即可;
(3)当点在点、之间时,过点作且交轴于点,证,得出的周长为8,再说明其他时候周长大于8即可.
(1)
解:∵的另一边一定在边的左边或上方且与轴交于点,
∴当点的坐标为(8,0)时,如图所示,此时,∠MBA=45°,
∴BN∥OC,
∴的另一边与轴没有交点,
∴点一定在(8,0)左侧,
当点与点重合时,点与点重合,此时,;当点与点重合时,点与点重合,此时,;
所以,的范围是或;
(2)
解:当点在点、之间时,此时,
∵BC∥OA,
∴,
∵∠MBN=45°,
∴,
,
∵与互余,
,
当点在点的左边时,此时,
同理可得,,
;
当点在点的右边且在(8,0)左侧时,据题意,同理可得,,
则,
;
(3)
解:当点在点、之间时,如图①,
过点作且交轴于点,
,,
,
又,,
,
,,又,,
,
,而的周长为,
当点在点的左边时,如图②,
必有,,
,
而,,故,
当点在点的右边时,如图③,则,,
,而,,
,
综上所述,只有当点在轴的正半轴上且在点的左边时,
的周长取得最小值且为8.
【点睛】
本题考查了全等三角形的判定与性质,解题关键是构建全等三角形,利用全等三角形的性质进行推理证明.
八年级下册第十九章 平面直角坐标系综合与测试课时作业: 这是一份八年级下册第十九章 平面直角坐标系综合与测试课时作业,共23页。试卷主要包含了已知点P的坐标为,点关于轴的对称点是等内容,欢迎下载使用。
初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试复习练习题: 这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试复习练习题,共30页。试卷主要包含了若点P等内容,欢迎下载使用。
初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试练习: 这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试练习,共19页。试卷主要包含了在平面直角坐标系xOy中,点M,下列说法错误的是,下列命题中,是真命题的有,在平面直角坐标系中,点P,点A关于轴的对称点的坐标是等内容,欢迎下载使用。