![2021-2022学年度冀教版八年级数学下册第二十章函数章节测评试题(名师精选)01](http://www.enxinlong.com/img-preview/2/3/12765831/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度冀教版八年级数学下册第二十章函数章节测评试题(名师精选)02](http://www.enxinlong.com/img-preview/2/3/12765831/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度冀教版八年级数学下册第二十章函数章节测评试题(名师精选)03](http://www.enxinlong.com/img-preview/2/3/12765831/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第二十章 函数综合与测试课时练习
展开冀教版八年级数学下册第二十章函数章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在函数中,自变量x的取值范围是( )
A.x≥﹣1 B.x≠3 C.x>﹣1 D.x≥﹣1且x≠3
2、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程(米),(米)与运动时间(分)之间的函数关系如图所示,下列结论中错误的是( )
A.两人前行过程中的速度为180米/分 B.的值是15,的值是2700
C.爸爸返回时的速度为90米/分 D.运动18分钟或31分钟时,两人相距810米
3、如图,某汽车离开某城市的距离y(km)与行驶时间t(h)之间的关系如图所示,根据图形可知,该汽车行驶的速度为( )
A.30km/h B.60km/h C.70km/h D.90km/h
4、下列曲线中,表示y是x的函数的是( )
A. B.
C. D.
5、下列各图中,不能表示y是x的函数的是( )
A. B.
C. D.
6、在下列图象中,是的函数的是( )
A. B.
C. D.
7、速度分别为100km/h和akm/h(0<a<100)的两车分别从相距s千米的两地同时出发,沿同一方向匀速前行.行驶一段时间后,其中一车按原速度原路返回,直到与另一车相遇时两车停止.在此过程中,两车之间的距离y(km)与行驶时间t(h)之间的函数关系如图所示.下列说法:
①a=60;②b=2;③c=b+;④若s=40,则b=.其中说法正确的是( )
A.①②③ B.①④ C.①② D.①③
8、甲、乙两只气球分别从不同高度同时匀速上升30min,气球所在的位置距离地面的高度h(单位:m)与气球上升的时间t(单位:min)之间的函数关系式如图所示.下列说法正确的是( )
A.10min时,两只气球都上升了30m B.乙气球的速度为3m/min
C.30min时,乙气球离地面的高度为60m D.30min时,甲乙两只气球的高度差为20m
9、变量x与y之间的关系是,当时,自变量x的值是( )
A.13 B.5 C.2 D.3
10、下列图象表示的两个变量间的关系中,y不是x的函数的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图①,底面积为30cm²的空圆柱容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②.若“几何体”的下方圆柱的底面积为15cm²,求“几何体”上方圆柱体的底面积为____________.
2、如图,一个矩形(向左右方向)推拉窗,窗高1.55米,则活动窗扇的通风面积S(平方米)与拉开长度b(米)的关系式是__.
3、在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象,若两人之间保持的距离不超过4km时,能够用无线对讲机保持联系,则甲、乙两人总共有________h可以用无线对讲机保持联系.
4、学校“青春礼”活动当天,小明和妈妈以不同的速度匀速从家里前往学校,小明害怕集合迟到先出发2分钟,随后妈妈出发,妈妈出发几分钟后,两人相遇,相遇后两人以小明的速度匀速前进,行进2分钟后,通过与妈妈交谈,小明发现忘记穿校服,于是小明立即掉头以原速度的2倍跑回家中,妈妈速度减半,继续匀速赶往学校,小明到家后,花了3分钟换校服,换好校服后,小明再次从家里出发,并以返回时的速度跑回学校,最后小明和妈妈同时到达学校.小明和妈妈之间的距离y与小明出发时间x之间的关系如图所示.则小明家与学校之间的距离是_____米.
5、定义:用_______来表示函数关系的方法叫做解析式法.
特点:解析式法简单明了,能够准确的反映整个变化过程中自变量与函数之间的对应关系,但有些实际问题中的函数关系,不能用解析式表示,如气温与时间的函数关系.
三、解答题(5小题,每小题10分,共计50分)
1、小明根据学习函数的经验,对函数y=﹣|x|+3的图象与性质进行了探究.下面是小明的探究过程,请你解决相关问题.
(1)如表y与x的几组对应值:
x | … | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | -1 | 0 | 1 | 2 | 3 | 2 | 1 | a | -1 | … |
①a= ;
②若A(b,﹣7)为该函数图象上的点,则b= ;
(2)如图,在平面直角坐标系中,描出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象:
①该函数有 (填“最大值”或“最小值”),并写出这个值为 ;
②求出函数图象与坐标轴在第二象限内所围成的图形的面积.
2、图中的折线表示一骑车人离家的距离y与时间x的关系.骑车人9:00离开家,15:00回家.请你根据这个折线图回答下列问题:
(1)这个人何时离家最远?这时他家多远?
(2)何时他开始第一次休息?休息多长时间?这时他离家多远?
(3)11:00~12:30他骑了多少千米?
(4)他在9:00~10:30和10:30~12:30的平均速度各是多少?
(5)他返家时的平均速度是多少?
(6)14:00时他离家多远?何时他距家?
3、甲、乙两车从城出发沿一条笔直公路匀速行驶至城,在整个行驶过程中,甲、乙两车离开城的距离与甲车行驶的时间之间的函数关系如图所示.
(1)、两城相距_____千米,乙车比甲车早到______小时;
(2)求出点坐标;
(3)两车都在行驶的过程中,当甲、乙两车相距40千米时,_____.
4、小亮想了解一根弹簧的长度是如何随所挂物体质量的变化而变化的,他把这根弹簧的上端固定,在其下端悬挂物体,下面是小亮测得的弹簧的长度y与所挂物体质量x的几组对应值:
所挂物体质量x/kg | 0 | 1 | 2 | 3 | 4 | 5 |
弹簧长度y/cm | 18 | 22 | 26 | 30 | 34 | 38 |
(1)上表所反映的变化过程中的两个变量,______是自变量,______是因变量;(请用文字语言描述)
(2)请直接写出y与x的关系式______;
(3)当弹簧长度为50cm(在弹簧承受范围内)时,求所挂重物的质量.(写出求解过程)
5、科学家研究发现,声音在空气中传播的速度y(米/秒)与气温x(℃)有关.当气温是0℃时,音速是331米/秒;当气温是5℃时,音速是334米/秒;当气温是10℃时,音速是337米/秒;当气温是15℃时,音速是340米/秒;当气温是20℃时,音速是343米/秒;当气温是25℃时,音速是346米/秒;当气温是30℃时,音速是349米/秒.
(1)请你用表格表示气温与音速之间的关系.
(2)表格反映了哪两个变量之间的关系?哪个是自变量?
(3)当气温是35℃时,估计音速y可能是多少?
(4)能否用一个式子来表示两个变量之间的关系?
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据分式的分母不为零,二次根式被开方数非负即可得到不等式组,解不等式组即可.
【详解】
由题意得:
解得:且
故选:D
【点睛】
本题考查了函数有意义的自变量的取值范围,一般地:若解析式中有分式,则分母不为零,若有二次根式,则被开方数非负,其余情况下自变量取值无限制,实际问题要具体情况具体分析.
2、D
【解析】
【分析】
两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m=15,由此即可计算出n的值和爸爸返回的速度,即可判断B、C;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案.
【详解】
解:∵3600÷20=180米/分,
∴两人同行过程中的速度为180米/分,故A选项不符合题意;
∵东东在爸爸返回5分钟后返回即第20分钟返回
∴m=20-5=15,
∴n=180×15=2700,故B选项不符合题意;
∴爸爸返回的速度=2700÷(45-15)=90米/分,故C选项不符合题意;
∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米,
∴运动18分钟时两人相距3240-2430=810米;
∵返程过程中东东45-20=25分钟走了3600米,
∴东东返程速度=3600÷25=144米/分,
∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米,
∴运动31分钟两人相距756米,故D选项符合题意;
故选D.
【点睛】
本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.
3、B
【解析】
【分析】
直接观察图象可得出结果.
【详解】
解:根据函数图象可知:t=1时,y=90;
∵汽车是从距离某城市30km开始行驶的,
∴该汽车行驶的速度为90-30=60km/h,
故选:B.
【点睛】
本题主要考查了一次函数的图象,正确的识别图象是解题的关键.
4、C
【解析】
【分析】
根据函数的定义可知,满足对于的每一个取值,都有唯一确定的值与之对应关系,据此即可确定答案.
【详解】
解:A、对于的每一个取值,可能有两个值与之对应,不符合题意;
B、对于的每一个取值,可能有两个值与之对应,不符合题意;
C、对于的每一个取值,都有唯一确定的值与之对应,符合题意;
D、对于的每一个取值,可能有两个值与之对应,不符合题意;
故选:
【点睛】
本题主要考查了函数概念,关键是掌握在一个变化过程中有两个变量与,对于的每一个确定的值,都有唯一的值与其对应,那么就说是的函数,是自变量.
5、D
【解析】
【分析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,即可求解.
【详解】
解:A、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;
B、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;
C、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;
D、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故本选项不符合题意;
故选:D
【点睛】
本题主要考查了函数的定义,熟练掌握在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量是解题的关键.
6、D
【解析】
【分析】
设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.根据函数的意义即可求出答案.
【详解】
解:A、对于x的每一个确定的值,y可能会有两个值与其对应,不符合函数的定义,故选项A不符合题意;
B、对于x的每一个确定的值,y可能会有多个值与其对应,不符合函数的定义,故选项B不符合题意;
C、对于x的每一个确定的值,y可能会有两个值与其对应,不符合函数的定义,故选项C不符合题意;
D、对于x的每一个确定的值,y有唯一的值与之对应,符合函数的定义,故选项D符合题意.
故选:D.
【点睛】
本题主要考查了函数的定义.解题的关键是掌握函数的定义,在定义中特别要注意,对于x的每一个值,y都有唯一的值与其对应.
7、D
【解析】
【分析】
①利用“速度=路程÷时间”可求出两车的速度差,结合快车的速度即可求得a值,即可判断①;②利用“时间=两车之间的距离÷两车速度差”可得出b值,由s不确定可得出b值不确定即可判断②;③利用“两车第二次相遇的时间=快车转向时的时间+两车之间的距离÷两车的速度之和”可得出c值,即可判断③;④由②的结论结合s=40可得出b值,即可判定④.
【详解】
解:①两车的速度之差为80÷(b+2﹣b)=40(km/h),
∴a=100﹣40=60,结论①正确;
②两车第一次相遇所需时间=(h),
∵s的值不确定,
∴b值不确定,结论②不正确;
③两车第二次相遇时间为b+2+=b+(h),
∴c=b+,结论③正确;
④∵b=,s=40,
∴b=1,结论④不正确.
故选:D.
【点睛】
本题主要考查了一次函数的应用,掌握数形结合思想成为解答本题的关键.
8、D
【解析】
【分析】
根据题意和函数中的数据,可以计算出甲、乙两只气球的速度,然后即可判断各个选项中的说法是否正确.
【详解】
解:由图象可得,
10min时,甲气球上升了m,乙气球上升了−=20(m),故选项A错误;
甲气球的速度为:÷=(m/ min),
乙气球的速度为:(−)÷=(m/ min),故选项B错误;
30min时,乙气球距离地面的高度是+(m),故选项C错误;
则30min时,两架无人机的高度差为:()−(+)=20(m),故选项D正确;
故选:D.
【点睛】
本题考查一次函数的应用,计算出甲、乙两架无人机的速度是解答本题的关键,利用数形结合的思想解答.
9、C
【解析】
【分析】
直接把y=5代入y=2x+1,解方程即可.
【详解】
解:当y=5时,5=2x+1,
解得:x=2,
故选:C.
【点睛】
本题考查了函数值,解题的关键是掌握已知函数解析式,给出函数值时,求相应的自变量的值就是解方程.
10、D
【解析】
【分析】
根据一个x值只能对应一个y值判断即可;
【详解】
根据一个x值只能对应一个y值可知D不是y不是x的函数;
【点睛】
本题主要考查了函数图像的判断,准确分析判断是解题的关键.
二、填空题
1、24cm²
【解析】
【分析】
从注水24秒到42秒这一段,根据水面升高的高度及圆柱的体积公式,可求得注水的速度;从开始的18秒内的注水情况可求得“几何体”下方圆柱的高,即a的值,从而可得“几何体”上方圆柱的高,并计算出18秒到24秒注水的体积,设“几何体”上方圆柱的底面积为S,可得到关于S的方程,解方程即可求得S.
【详解】
由图②知,从注水24秒到42秒这一段,水面升高了14−11=3(cm),则共注水30×3=90(cm3),则注水的速度为90÷(42−24)=5(cm3/s);
前18秒共注水18×5=90(cm3),则a=90÷(30−15)=6(cm);
18秒到24秒共注水(24−18)×5=30(cm3),设“几何体”上方圆柱的底面积为S,则可得方程:(11−6)(30−S)=30
解得:S=24
即“几何体”上方圆柱的底面积为24cm2.
故答案为:24cm²
【点睛】
本题考查了函数的图象,圆柱的体积等知识,读懂函数图象,图象中获取信息是关键;另外计算出注水速度也是本题的关键.
2、S=1.55b
【解析】
【分析】
通风面积是拉开长度与窗高的乘积.
【详解】
解:活动窗扇的通风面积S(米2)与拉开长度b(米)的关系是S=1.55b.
故答案为:S=1.55b.
【点睛】
本题考查了列函数关系式的知识,解决问题的关键是读懂题意,找到所求的量的等量关系.
3、
【解析】
【分析】
根据题意可得A、B两地的距离为40千米;从而得到甲的速度为10千米/时,
乙的速度为 20千米/时;然后设x小时后,甲、乙两人相距4km,可得到当 或 时,甲、乙两人可以用无线对讲机保持联系,即可求解.
【详解】
解:根据题意得:当x=0时,甲距离B地40千米,
∴A、B两地的距离为40千米;
由图可知,甲的速度为40÷4=10千米/时,
乙的速度为40÷2=20千米/时;
设x小时后,甲、乙两人相距4km,
若是相遇前,则10x+20x=40-4,解得:x=1.2;
若是相遇后,则10x+20x=40+4,解得: ;
若是到达B地前,则10x-20(x-2)=4,解得:x=3.6
∴当 或 时,甲、乙两人可以用无线对讲机保持联系,
即甲、乙两人总共有 可以用无线对讲机保持联系.
故答案为:
【点睛】
本题主要考查了函数图象,能够从图形获取准确信息是解题的关键.
4、1760
【解析】
【分析】
根据函数图象可知,小明出发2分钟后走了160米,据此可得小明原来的速度,进而得出小明回时的速度.
【详解】
解:小明离家2分钟走了160米,
∴小明初始速度为160÷2=80米/分;
小明返回家速度为80×2=160米/分,妈妈继续行进速度80÷2=40米/分;
小明在家换衣服3分钟时间,妈妈走了40×3=120米,
设小明换好衣服离开家到与妈妈同时到达学校的时间为t分,
则有160t=1200+120+40t,
∴t=11,
∴小明离家距离为11×160=1760米.
故答案为:1760米.
【点睛】
本题主要是考查了从函数图像获取信息,解题的关键是根据题意正确分析出函数图像中的数据.
5、解析式
【解析】
略
三、解答题
1、 (1)①0;②±10;
(2)见解析;①最大值,3;②
【解析】
【分析】
(1)①根据表中对应值和对称性即可求解;②将点A坐标代入函数解析式中求解即可;
(2)根据表中对应值,利用描点法画出函数图象即可.①根据图象即解答即可;②根据图象在第二象限的部分,利用三角形的面积公式求解即可.
(1)
解:①由表可知,该函数图象关于y轴对称,
∵当x=-3时,y=0,
∴当x=3时,a=0,
故答案为:0;
②将A(b,-7)代入y=﹣|x|+3中,得:-7 =﹣|b|+3,即|b|=10,
解得:b=±10,
故答案为:±10;
(2)
解:函数y=﹣|x|+3的图象如图所示:
①由图象可知,该函数有最大值,最大值是3,
故答案为:最大值,3;
②由图象知,函数图象与坐标轴在第二象限内所围成的图形的面积为.
【点睛】
本题考查求自变量或函数值、画函数图象、从图象中获取信息、解绝对值方程、三角形的面积公式,理解题意,准确从表中和图象中获取有效信息是解答的关键.
2、(1)12:30~13:30,;(2)10:30,,;(3);(4),;(5);(6),14:30
【解析】
【分析】
(1)直接观察图象,即可求解;
(2)直接观察图象,即可求解;
(3)用12:30时对应的距离减去11:00对应的距离,即可求解;
(4)根据平均速度等于该时间段的路程除以时间,即可求解;
(5)根据平均速度等于该时间段的路程除以时间,即可求解;
(6)可先求出14:00到15:00的1小时内的平均速度,可得他距家时,从14:00所骑的路程,即可求解.
【详解】
解:(1)由图可知,这个人12:30-13:30时,离家最远,这时他离家45km;
(2)由图可知,10:30时他开始第一次休息,从10:30到11:00,共休息了0.5h,这时他离家30km;
(3)11:00~12:30他骑了45-30=15km;
(4)他在9:00-10:30的1.5小时内的平均速度为:
30÷1.5=20km/h,
10:30~12:30的2小时内的平均速度为:(45-30)÷2=7.5km/h;
(5)由图象可得:他返家时间为从13:30到15:00,共1.5h,
45÷1.5=30km/h,
即他返家时的平均速度是30km/h;
(6)由图可知,14:00时他离家18km
14:00到15:00的1小时内的平均速度为:
18÷1=18km/h,
(18-9)÷18=0.5h,
即回家路上,14:30时他离家9km.
【点睛】
本题主要考查了函数图象的意义,能准确从函数图象获取信息是解题的关键.
3、 (1)300千米,1小时
(2)
(3)或
【解析】
【分析】
(1)根据图象,即可求解;
(2)根据图象,可得乙车在点追上甲车,再求出两车的速度,然后设甲车出发小时后,乙车追上甲车,可得,解出即可求解;
(3)分两种情况讨论,即可求解.
(1)
解:由图象可得,
,两城相距300千米,乙车比甲车早到(小时);
(2)
解:由图象可得,乙车在点追上甲车,
甲车的速度为(千米/时),乙车的速度为(千米/时),
设甲车出发小时后,乙车追上甲车,
,
解得,
∴(千米),
∴点;
(3)
解:根据题意得:当乙车没有追上甲车前,甲、乙两车相距40千米时,
,
解得: ;
当乙车超过甲车后,甲、乙两车相距40千米时,
,
解得:;
综上所述,当甲、乙两车相距40千米时,或.
【点睛】
本题主要考查了函数图象,从函数图象获取准确信息,并利用数形结合思想解答是解题的关键.
4、(1)所挂物体质量,弹簧长度;(2)y=4x+18;(3)8kg
【解析】
【分析】
(1)因为表中的数据主要涉及到弹簧的长度和所挂物体的质量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;
(2)利用表格中数据的变化进而得出答案;
(3)由(2)中关系式,可求当弹簧长度为50cm(在弹簧承受范围内)时,所挂重物的质量.
【详解】
解:(1)上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;
故答案为:所挂物体质量,弹簧长度;
(2)由表格可得:当所挂物体重量为1千克时,弹簧长4厘米;当不挂重物时,弹簧长18厘米,
则y与x的关系式为:y=4x+18;
故答案为:y=4x+18;
(3)当弹簧长度为50cm(在弹簧承受范围内)时,
50=4x+18,
解得x=8,
答:所挂重物的质量为8kg.
【点睛】
本题考查了函数的表示方法,本题需仔细分析表中的数据,进而解决问题.明确变量及变量之间的关系是解好本题的关键.
5、 (1)见解析;(2)两个变量是:传播的速度和温度,温度是自变量;(3) 352米/秒; (4) y=331+x.
【解析】
【分析】
(1)根据题中数据列出表格.
(2)找出题中的两个变量.
(3)根据传播速度与温度的变化规律进而得出答案.
(4)结合(3)中发现得出两个变量之间的关系.
【详解】
(1)列表如下:
x(℃) | 0 | 5 | 10 | 15 | 20 | 25 | 30 |
y(米/秒) | 331 | 334 | 337 | 340 | 343 | 346 | 349 |
(2)两个变量是:传播的速度和温度,温度是自变量.
(3) 根据表格中音速y(米/秒)随着气温x(℃)的变化规律可知,
当气温再增加5℃,音速就相应增加3米/秒,即为349+3=352(米/秒),
当气温是35℃时,估计音速y可能是:352米/秒.
(4)根据表格中数据可得出:温度每升高5℃,传播的速度增加3,当x=0时,y=331,故两个变量之间的关系为: y=331+x.
【点睛】
本题考查了变量与常量以及函数表示方法,理解两个变量的变化规律是得出函数关系式的关键.
数学八年级下册第二十章 函数综合与测试复习练习题: 这是一份数学八年级下册第二十章 函数综合与测试复习练习题,共22页。试卷主要包含了下图中表示y是x函数的图象是等内容,欢迎下载使用。
初中数学冀教版八年级下册第二十章 函数综合与测试复习练习题: 这是一份初中数学冀教版八年级下册第二十章 函数综合与测试复习练习题,共22页。试卷主要包含了小斌家,如图,点A的坐标为等内容,欢迎下载使用。
数学八年级下册第二十章 函数综合与测试课后作业题: 这是一份数学八年级下册第二十章 函数综合与测试课后作业题,共22页。试卷主要包含了变量,有如下关系,函数的自变量x的取值范围是等内容,欢迎下载使用。