![精品试卷冀教版八年级数学下册第十九章平面直角坐标系定向攻克试卷(精选含详解)01](http://www.enxinlong.com/img-preview/2/3/12766049/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷冀教版八年级数学下册第十九章平面直角坐标系定向攻克试卷(精选含详解)02](http://www.enxinlong.com/img-preview/2/3/12766049/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷冀教版八年级数学下册第十九章平面直角坐标系定向攻克试卷(精选含详解)03](http://www.enxinlong.com/img-preview/2/3/12766049/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后测评
展开八年级数学下册第十九章平面直角坐标系定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在平面直角坐标系xOy中,点A(0,2),B(a,0),C(m,n)(n>0).若△ABC是等腰直角三角形,且AB=BC,当0<a<1时,点C的横坐标m的取值范围是( )
A.0<m<2 B.2<m<3 C.m<3 D.m>3
2、如图,网格中的每个小正方形边长均为1,的顶点均落在格点上,若点A的坐标为,则到三个顶点距离相等的点的坐标为( )
A. B. C. D.
3、在平面直角坐标系中,点在
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4、点A的坐标为,则点A在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5、在平面直角坐标系中,已知点P(5,−5),则点P在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
6、在平面直角坐标系坐标中,第二象限内的点A到x轴的距离是3,到y轴的距离是2,则A点坐标为( )
A.(﹣3,2) B.(﹣2,3) C.(2,﹣3) D.(3,﹣2)
7、如图所示,在平面直角坐标系xOy中,△ABC关于直线y=1对称,已知点A的坐标是(3,4),则点B的坐标是( )
A.(3,﹣4) B.(﹣3,2) C.(3,﹣2) D.(﹣2,4)
8、已知点A(m,2)与点B(1,n)关于y轴对称,那么m+n的值等于( )
A.﹣1 B.1 C.﹣2 D.2
9、下列命题中为真命题的是( )
A.三角形的一个外角等于两内角的和
B.是最简二次根式
C.数,,都是无理数
D.已知点E(1,a)与点F(b,2)关于x轴对称,则a+b=﹣1
10、点A关于y轴的对称点A1坐标是(2,-1),则点A关于轴的对称点A2坐标是( )
A.(-1,-2) B.(-2,1) C.(2,1) D.(2,-1)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、电影票上“10排3号”,记作,“8排23号”,记作,则“5排16号”记作______.
2、若点M(1,a)与点N(b,3)关于y轴对称,则a=___,b=___.
3、如图,的顶点都在正方形网格的格点上,点A的坐标为,将沿坐标轴翻折,则点C的对应点的坐标是______.
4、在平面直角坐标系xOy中,已知三角形的三个顶点的坐标分别是A(0,1),B(1,0),C(1,2),点P在y轴上,设三角形ABP和三角形ABC的面积分别为S1和S2,如果S1⩾S2,那么点P的纵坐标yp的取值范围是 ________.
5、我们用含有两个数的表达方式来表示一个确定的___________,其中两个数各自表示不同的含义,这种________的两个数a与b组成的数对,叫做有序数对,记作( ),___ ).
注意:
①数a与b是有顺序的;
②数a与b是有特定含义的;
③有序数对表示平面内的点,每个点与有序数对________.
三、解答题(5小题,每小题10分,共计50分)
1、这是某乡镇的示意图.试建立直角坐标系,用坐标表示各地的位置:
2、如图,在平面直角坐标系中,△ABC各顶点的坐标分别为:A(﹣2,4),B(﹣4,2),C(﹣3,1),按下列要求作图.
(1)画出△ABC关于x轴对称的图形△A1B1C1(点A、B、C分别对应A1、B1、C1);
(2)△A1B1C1的面积= ;
(3)若M(x,y)是△ABC内部任意一点,请直接写出这点在△A1B1C1内部的对应点M1的坐标 ;
(4)请在y轴上找出一点P,满足线段AP+B1P的值最小,并写出P点坐标 .
3、如图,在平面直角坐标系中,的三个顶点都在格点上,点的坐标为,请回答下列问题.
(1)画出关于x轴对称的,并写出点的坐标(___,___)
(2)点P是x轴上一点,当的长最小时,点P坐标为______;
(3)点M是直线BC上一点,则AM的最小值为______.
4、如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).
(1)在图中作出△ABC关于y轴的对称图形△A1B1C1
(2)写出点A1,B1,C1的坐标.
5、如图,在正方形网格中,每个小正方形的边长都为1,点A,点B在网格中的位置如图所示.
(1)请在下面方格纸中建立适当的平面直角坐标系,使点A、点B的坐标分别为、;
(2)点C的坐标为,连接,则的面积为_________.
(3)在图中画出关于y轴对称的图形;
(4)在x轴上找到一点P,使最小,则的最小值是_________.
-参考答案-
一、单选题
1、B
【解析】
【分析】
过点C作CD⊥x轴于D,由“AAS”可证△AOB≌△BDC,可得AO=BD=2,BO=CD=n=a,即可求解.
【详解】
解:如图,过点C作CD⊥x轴于D,
∵点A(0,2),
∴AO=2,
∵△ABC是等腰直角三角形,且AB=BC,
∴∠ABC=90°=∠AOB=∠BDC,
∴∠ABO+∠CBD=90°=∠ABO+∠BAO,
∴∠BAO=∠CBD,
在△AOB和△BDC中,
,
∴△AOB≌△BDC(AAS),
∴AO=BD=2,BO=CD=n=a,
∴0<a<1,
∵OD=OB+BD=2+a=m,
∴
∴2<m<3,
故选:B.
【点睛】
本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.
2、C
【解析】
【分析】
到△ABC三个顶点距离相等的点是AB与AC的垂直平分线的交点,画出交点,进而得出其坐标即可.
【详解】
解:平面直角坐标系如图所示,AB与AC的垂直平分线的交点为点O,
∴到△ABC三个顶点距离相等的点的坐标为(0,0),
故选:C.
【点睛】
本题主要考查了线段垂直平分线的性质,线段垂直平分线上任意一点,到线段两端点的距离相等.
3、B
【解析】
【分析】
横坐标小于0,纵坐标大于0,则这点在第二象限.
【详解】
解:,,
在第二象限,
故选:B.
【点睛】
本题考查了点的坐标,四个象限内坐标的符号:第一象限:,;第二象限:,;第三象限:,;第四象限:,;是基础知识要熟练掌握.
4、A
【解析】
【分析】
应先判断出点的横纵坐标的符号,进而判断点所在的象限.
【详解】
解:由题意,
∵点A的坐标为,
∴点A在第一象限;
故选:A
【点睛】
本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
5、D
【解析】
【分析】
根据各象限内点的坐标特征解答即可.
【详解】
解:点P(5,-5)的横坐标大于0,纵坐标小于0,所以点P所在的象限是第四象限.
故选:D.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
6、B
【解析】
【分析】
根据第二象限内点的坐标特征以及点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值解答.
【详解】
解:第二象限的点到轴的距离是3,到轴的距离是2,
点的横坐标是,纵坐标是3,
点的坐标为.
故选:B.
【点睛】
本题考查了点的坐标,解题的关键是熟记点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值.
7、C
【解析】
【分析】
根据轴对称的性质解决问题即可.
【详解】
解:∵△ABC关于直线y=1对称,
∴点A和点B是关于直线y=1对称的对应点,它们到y=1的距离相等是3个单位长度,
∵点A的坐标是(3,4),
∴B(3,﹣2),
故选:C.
【点睛】
本题主要考查了坐标的对称特点.解此类问题的关键是要掌握轴对称的性质:对称轴垂直平分对应点的连线.利用此性质可在坐标系中得到对应点的坐标.
8、B
【解析】
【分析】
关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此先求出m,n的值,然后代入代数式求解即可得.
【详解】
解:∵与点关于y轴对称,
∴,,
∴,
故选:B.
【点睛】
题目主要考查点关于坐标轴对称的特点,求代数式的值,理解题意,熟练掌握点关于坐标轴对称的特点是解题关键.
9、D
【解析】
【分析】
利用三角形的外角的性质、最简二次根式的定义、无理数的定义及关于坐标轴对称的点的特点分别判断后即可确定正确的选项.
【详解】
解:A、三角形的外角等于不相邻的两个内角的和,故原命题错误,是假命题,不符合题意;
B、,不是最简二次根式,故原命题是假命题,不符合题意;
C、是有理数,故原命题错误,是假命题,不符合题意;
D、已知点E(1,a)与点F(b,2)关于x轴对称,a=1,b=-2,则a+b=﹣1,正确,为真命题,符合题意.
故选:D.
【点睛】
考查了命题与定理的知识,解题的关键是了解三角形的外角的性质、最简二次根式的定义、无理数的定义及关于坐标轴对称的点的特点,难度不大.
10、B
【解析】
【分析】
由题意由对称性先求出A点坐标,再根据对称性求出点关于轴的对称点坐标.
【详解】
解:由点关于轴的对称点坐标是,可知A为,则点关于轴的对称点坐标是.
故选B.
【点睛】
本题考查对称性,利用点关于轴对称,横轴坐标变为相反数,纵轴坐标不变以及点关于轴对称,纵轴坐标变为相反数,横轴坐标不变进行分析.
二、填空题
1、
【解析】
【分析】
根据题中规定的意义写出一对有序实数对.
【详解】
解:∵电影票上“10排3号”,记作,“8排23号”,记作,
∴“5排16号”记作(5,16).
故答案为(5,16).
【点睛】
本题考查了坐标确定位置:平面直角坐标系中,有序实数对与点一一对应;记住平面直角坐标系中特殊位置的点的坐标特征.
2、 3
【解析】
【分析】
根据平面直角坐标系中两个点关于坐标轴成轴对称的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数,据此直接求解即可.
【详解】
解:∵点与点关于y轴对称,
∴,,
故答案为:3;.
【点睛】
题目主要考查平面直角坐标系中两个点关于坐标轴成轴对称的特点,理解对称点的坐标规律是解题关键.
3、或
【解析】
【分析】
根据题意,分两种情况讨论:点C关于x轴翻折;点C关于y轴翻折;分别根据翻折情况坐标点的特点求解即可得.
【详解】
解:点C关于坐标轴翻折,分两种情况讨论:
点C关于x轴翻折,横坐标不变,纵坐标互为相反数可得:;
点C关于y轴翻折,纵坐标不变,横坐标互为相反数可得:;
故答案为:或.
【点睛】
题目主要考查坐标系中轴对称的点的特点,理解题意,熟练掌握轴对称点的特点是解题关键.
4、或
【解析】
【分析】
借助坐标系内三角形底和高的确定,利用三角形面积公式求解.
【详解】
解:如图,
S1=×|yP−yA|×1,
S2=×2×1=1,
∵S1≥S2,
∴|yP-1|≥3,
解得:yP≤-2或yP≥4.
【点睛】
本题主要考查坐标系内三角形面积的计算,关系是确定三角形的底和高.
5、 位置 有顺序 a b 一一对应
【解析】
略
三、解答题
1、见解析
【解析】
【详解】
2、 (1)见解析
(2)2
(3)(x,-y)
(4)点P见解析,(0,2)
【解析】
【分析】
(1)直接利用关于x轴对称点的性质得出对应点位置,进而得出答案;
(2)利用割补法进行计算,即可得到△A1B1C1的面积;
(3)根据点M和M1关于x轴对称可得结果;
(4)直接利用轴对称求最短路线的方法得出答案.
【小题1】
解:如图所示:△A1B1C1点即为所求;
【小题2】
△A1B1C1的面积==2;
【小题3】
由题意可得:M1的坐标为(x,-y);
【小题4】
如图所示:点P即为所求,点P的坐标为(0,2).
【点睛】
此题主要考查了轴对称变换,正确得出对应点位置是解题关键.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.
3、(1)5,-3;(2)(,0);(3)
【解析】
【分析】
(1)利用关于x轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;
(2)连接BC1交x轴于点P,利用两点之间线段最短可判断P点满足条件,利用待定系数法求得直线BC1的解析式,即可求解;
(3)利用割补法求得△ABC的面积,利用两点之间的距离公式求得BC的长,再利用面积法即可求解.
【详解】
解:(1)如图,△A1B1C1为所作,点C1的坐标为(5,-3);
故答案为:5,-3;
(2)如图,点P为所作.
设直线BC1的解析式为y=kx+b,
∵点C1的坐标为(5,-3),点B的坐标为(1,2),
∴,解得:,
∴直线BC1的解析式为y=x+,
当y=0时,x=,
∴点P的坐标为(,0);
故答案为:(,0);
(3)根据垂线段最短,当AM垂直BC时,垂线段AM取得最小值,
△ABC的面积为2×4-×2×1-×4×1-×3×1=;
BC=,
∵××AM=,
∴AM=.
故答案为:.
【点睛】
本题考查了作图-轴对称变换:几何图形都可看作是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.注意:关于x轴对称的点,横坐标相同,纵坐标互为相反数.
4、 (1)见解析
(2)A1(1,5),B1(1,0),C1(4,3)
【解析】
【分析】
(1)分别作出A,B,C的对应点A1,B1,C1即可.
(2)根据A1,B1,C1的位置写出坐标即可.
(1)
解:所作图形△A1B1C1如下所示:
(2)
解:根据所作图形知:A1(1,5),B1(1,0),C1(4,3).
【点睛】
本题考查作图-轴对称变换,解题的关键是熟练掌握基本知识.关于y轴对称的点,纵坐标相同,横坐标互为相反数.
5、 (1)见解析
(2)
(3)见解析
(4)
【解析】
【分析】
(1)根据A,B两点坐标确定平面直角坐标系即可;
(2)把三角形的面积看成矩形面积减去周围三个三角形面积即可;
(3)根据轴对称的性质找到对应点,顺次连接即可;
(4)作点A关于x轴的对称点A′,连接BA′交x轴于点P,此时AP+BP最小.
【小题1】
解:如图,平面直角坐标系如图所示;
【小题2】
如图,△ABC即为所求,
S△ABC==;
【小题3】
如图,△A1B1C1即为所求;
【小题4】
如图,点P即为所求,
AP+BP=A′P+PB= A′B==.
【点睛】
本题考查作图-轴对称变换,勾股定理、轴对称最短问题等知识,解题的关键是熟练掌握轴对称变换的性质,属于中考常考题型.
初中冀教版第十九章 平面直角坐标系综合与测试课堂检测: 这是一份初中冀教版第十九章 平面直角坐标系综合与测试课堂检测,共28页。试卷主要包含了已知点P的坐标为,在平面直角坐标系中,已知点P等内容,欢迎下载使用。
初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步测试题: 这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步测试题,共20页。试卷主要包含了下列各点中,在第二象限的点是,点A关于y轴的对称点A1坐标是,点A关于轴的对称点的坐标是,在平面直角坐标系xOy中,点A等内容,欢迎下载使用。
初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试测试题: 这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试测试题,共21页。试卷主要包含了点A关于轴的对称点的坐标是,在平面直角坐标系中,点A,在平面直角坐标系中,点等内容,欢迎下载使用。