![2021-2022学年基础强化冀教版八年级数学下册第十九章平面直角坐标系专项测评试卷01](http://www.enxinlong.com/img-preview/2/3/12766112/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化冀教版八年级数学下册第十九章平面直角坐标系专项测评试卷02](http://www.enxinlong.com/img-preview/2/3/12766112/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化冀教版八年级数学下册第十九章平面直角坐标系专项测评试卷03](http://www.enxinlong.com/img-preview/2/3/12766112/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版第十九章 平面直角坐标系综合与测试同步达标检测题
展开八年级数学下册第十九章平面直角坐标系专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若点P(m,1)在第二象限内,则点Q(1﹣m,﹣1)在( )
A.第四象限 B.第三象限 C.第二象限 D.第一象限
2、若点在第三象限,则点在( ).A.第一象限 B.第二象限 C.第三象限 D.第四象限
3、如图,在平面直角坐标系中,可以看作是经过若干次图形的变化(平移、轴对称)得到的,下列由得到的变化过程错误的是( )
A.将沿轴翻折得到
B.将沿直线翻折,再向下平移个单位得到
C.将向下平移个单位,再沿直线翻折得到
D.将向下平移个单位,再沿直线翻折得到
4、若点在第三象限内,则m的值可以是( )
A.2 B.0 C. D.
5、在平面直角坐标系xOy中,点M(1,2)关于x轴对称点的坐标为( )
A.(1,-2) B.(-1,2) C.(-1,-2) D.(2,-1)
6、在平面直角坐标系中,点P(-2,3)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7、在平面直角坐标系中,所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
8、在平面直角坐标系中,点在轴上,则点的坐标为( ).
A. B. C. D.
9、已知点P(a,3)和点Q(4,b)关于x轴对称,则a+b的值为( ).A.1 B. C.7 D.
10、已知点和点关于轴对称,则的值为( )
A.1 B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若点,关于x轴对称,则b的值为______.
2、在平面直角坐标系中,把点P(a−1,5)向左平移3个单位得到点Q(2−2b,5),则2a+4b+3的值为______.
3、如图,△ABC的顶点A,B分别在x轴,y轴上,∠ABC=90°,OA=OB=1,BC=2,将△ABC绕点O顺时针旋转,每次旋转90°,则第2021次旋转结束时,点C的坐标为 _____.
4、如图所示,是由北京国际数学家大会的会徽演化而成的图案,其主体部分是由一连串的等腰直角三角形依次连接而成,其中∠MA1A2=∠MA2A3…=∠MAnAn+1=90°,(n为正整数),若M点的坐标是(-1,2),A1的坐标是(0,2),则A22的坐标为___.
5、已知点(a+1,2a+5)在y 轴上,则该点坐标为________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在平面直角坐标系中,ABC的顶点坐标为A(﹣1,1),B(﹣3,2),C(﹣2,4).
(1)在图中作出ABC向右平移4个单位,再向下平移5个单位得到的A1B1C1;
(2)在图中作出A1B1C1关于y轴对称的A2B2C2;
(3)经过上述平移变换和轴对称变换后,ABC内部的任意一点P(a,b)在A2B2C2内部的对应点P2的坐标为 .
2、如图,在平面直角坐标系中,边长为4的正方形在第一象限内,点、分别在轴、轴上,设点是轴上异于点、的点,过点作∠MBN=45°,的另一边一定在边的左边或上方且与轴交于点,设.
(1)直接写出的范围;
(2)若点为轴上的动点,结合图形,求(用含的式子表示);
(3)当点为轴上的动点时,求的周长的最小值,并说明此时点的位置.
3、如图所示的方格纸中,每个小正方形的边长都是1个单位长度,三角形ABC的三个顶点都在小正方形的顶点上.
(1)画出三角形ABC向左平移4个单位长度后的三角形DEF(点D、E、F与点A、B、C对应),并画出以点E为原点,DE所在直线为x轴,EF所在直线为y轴的平面直角坐标系;
(2)在(1)的条件下,点D坐标(﹣3,0),将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点P、Q、M(点P、Q、M与点D、E、F对应),画出三角形PQM,并直接写出点P的坐标.
4、已知是经过平移得到的,它们各顶点在平面直角坐标系中的坐标如下表所示:
(1)观察表中各对应点坐标的变化,确定______,______,______;
(2)在平面直角坐标系中画出,,并求出的面积.
5、如图,在平面直角坐标系中,已知的三个顶点都在网格的格点上.
(1)在图中作出关于轴对称的,并写出点的对应点的坐标;
(2)在图中作出关于轴对称的,并写出点的对应点的坐标.
-参考答案-
一、单选题
1、A
【解析】
【分析】
直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案.
【详解】
∵点P(m,1)在第二象限内,
∴m<0,
∴1﹣m>0,
则点Q(1﹣m,﹣1)在第四象限.
故选:A.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
2、A
【解析】
【分析】
根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.
【详解】
∵点P(m,n)在第三象限,
∴m<0,n<0,
∴-m>0,-n>0,
∴点在第一象限.
故选:A.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
3、C
【解析】
【分析】
根据坐标系中平移、轴对称的作法,依次判断四个选项即可得.
【详解】
解:A、根据图象可得:将沿x轴翻折得到,作图正确;
B、作图过程如图所示,作图正确;
C、如下图所示为作图过程,作图错误;
D、如图所示为作图过程,作图正确;
故选:C.
【点睛】
题目主要考查坐标系中图形的平移和轴对称,熟练掌握平移和轴对称的作法是解题关键.
4、C
【解析】
【分析】
根据第三象限内点的特点可知横纵坐标都为负,据此判断即可.
【详解】
解:∵点在第三象限内,
∴
m的值可以是
故选C
【点睛】
本题考查了第三象限内点的坐标特征,掌握各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.
5、A
【解析】
【分析】
根据平面直角坐标系中,关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数即可求解.
【详解】
解:点M(1,2)关于x轴的对称点的坐标为(1,-2);
故选:A.
【点睛】
此题主要考查了关于x轴对称点的坐标特征,点P(x,y)关于x轴的对称点P′的坐标是(x,-y).
6、B
【解析】
【分析】
根据点横纵坐标的正负分析得到答案.
【详解】
解:点P(-2,3)在第二象限,
故选:B.
【点睛】
此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键.
7、D
【解析】
【分析】
先判断出点的横纵坐标的符号,进而判断点所在的象限.
【详解】
解:∵点的横坐标3>0,纵坐标-4<0,
∴点P(3,-4)在第四象限.
故选:D.
【点睛】
本题考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
8、A
【解析】
【分析】
根据轴上的点的坐标特点纵坐标为0,即求得的值,进而求得点的坐标
【详解】
解:∵点在轴上,
∴
解得
故选A
【点睛】
本题考查了轴上的点的坐标特征,理解“轴上的点的坐标特点是纵坐标为0”是解题的关键.平面直角坐标系中坐标轴上点的坐标特点:①x轴正半轴上的点:横坐标>0,纵坐标=0;②x轴负半轴上的点:横坐标<0,纵坐标=0;③y轴正半轴上的点:横坐标=0,纵坐标>0;
④y轴负半轴上的点:横坐标=0,纵坐标<0;⑤坐标原点:横坐标=0,纵坐标=0.
9、A
【解析】
【分析】
直接利用关于x轴对称点的性质(横坐标不变,纵坐标互为相反数)得出a,b的值,进而得出答案.
【详解】
解:∵点P(a,3)和点Q(4,b)关于x轴对称,
∴a=4,b=-3,
则a+b =4-3=1.
故选:A.
【点睛】
本题主要考查了关于x轴对称点的性质,正确得出a,b的值是解题关键.
10、A
【解析】
【分析】
直接利用关于轴对称点的性质(横坐标不变,纵坐标互为相反数)得出,的值,进而得出答案.
【详解】
解答:解:点和点关于轴对称,
,,
则
.
故选:A.
【点睛】
此题主要考查了关于轴对称点的性质,正确得出,的值是解题关键.
二、填空题
1、
【解析】
【分析】
平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,−y),据此即可求解.
【详解】
解:依题意可得a=-4,b=-3,
故答案为:-3.
【点睛】
本题考查了关于x轴对称的点的坐标,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.
2、15
【解析】
【分析】
直接利用平移中点的变化规律求得a+2b=6,再整体代入求解即可.
【详解】
解:∵把点P(a−1,5)向左平移3个单位得到点Q(2−2b,5),
∴a-1-3=2-2b,即a+2b=6,
∴2a+4b+3=2(a+2b)+3=15,
故答案为:15.
【点睛】
本题考查了坐标系中点、线段的平移规律以及代数式的求值.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
3、
【解析】
【分析】
过点C作 轴于点D,根据 OA=OB=1,∠AOB=90°,可得∠ABO=45°,从而得到∠CBD=45°,进而得到BD=CD=2,,可得到点,再由将△ABC绕点O顺时针旋转,第一次旋转90°后,点,将△ABC绕点O顺时针旋转,第二次旋转90°后,点,将△ABC绕点O顺时针旋转,第三次旋转90°后,点,将△ABC绕点O顺时针旋转,第四次旋转90°后,点, 由此发现,△ABC绕点O顺时针旋转四次一个循环,即可求解.
【详解】
解:如图,过点C作 轴于点D,
∵OA=OB=1,∠AOB=90°,
∴∠ABO=45°,
∵∠ABC=90°,
∴∠CBD=45°,
∴∠BCD=45°,
∴BD=CD,
∵BC=2,
∴ ,
∴BD=CD=2,
∴OD=OB+BD=3,
∴点,
将△ABC绕点O顺时针旋转,第一次旋转90°后,点,
将△ABC绕点O顺时针旋转,第二次旋转90°后,点,
将△ABC绕点O顺时针旋转,第三次旋转90°后,点,
将△ABC绕点O顺时针旋转,第四次旋转90°后,点,
由此发现,△ABC绕点O顺时针旋转四次一个循环,
∵ ,
∴第2021次旋转结束时,点C的坐标为.
故答案为:
【点睛】
本题主要考查了勾股定理,坐标与图形,图形的旋转,明确题意,准确得到规律是解题的关键.
4、(,)
【解析】
【分析】
探究规律,利用规律解决问题即可.
【详解】
解:观察图象可知,点的位置是8个点一个循环,
∵228=26,
∴A22与A6的位置在第三象限,且在经过点A2、M的直线上,
∵第一个等腰直角三角形的直角边长为1,
∴点A2(0,3),
设直线A2M的解析式为y=kx+3,
把M点的坐标(-1,2)代入得:-k+3=2,
解得:k=1,
∴直线A2M的解析式为y=x+3,
即A22点在直线y=x+3上,
第二个等腰直角三角形的边长为,
…,
第n个等腰直角三角形的边长为()n-1,
∴第22个等腰直角三角形的边长为()21,可得A22M=()21,
∴A21 A1=+1,
∴A22 的横坐标为:,
A22 的纵坐标为:,
∴A22(,),
故答案为:(,).
【点睛】
本题考查了勾股定理,坐标与图形的性质,等腰直角三角形的性质等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.
5、(0,3)
【解析】
【分析】
由点在y轴上求出a的值,代入求出2a+5即可得到点坐标.
【详解】
解:由题意得a+1=0,
得a=-1,
∴2a+5=3,
∴该点坐标为(0,3),
故答案为:(0,3).
【点睛】
此题考查了y轴上点坐标的特点,熟记坐标轴上点的坐标特点进行计算是解题的关键.
三、解答题
1、(1)见解析;(2)见解析;(3)(﹣a﹣4,b﹣5)
【解析】
【分析】
(1)利用平移变换的性质分别作出A,B,C 的对应点A1,B1,C1即可;
(2)利用轴对称变换的性质分别作出A1,B1,C1的对应点A2,B2,C2即可;
(3)利用平移变换的性质,轴对称变换的性质解决问题即可.
【详解】
解:(1)如图,△A1B1C1即为所求;
(2)如图,△A2B2C2即为所求;
(3)由题意得:P(﹣a﹣4,b﹣5).
故答案为:(﹣a﹣4,b﹣5);
【点睛】
本题考查作图−轴对称变换,平移变换的性质等知识,解题的关键是掌握轴对称的性质,平移变换的性质,属于中考常考题型.
2、 (1)或
(2)或
(3)只有当点在轴的正半轴上且在点的左边时, 的周长取得最小值且为8.
【解析】
【分析】
(1)先确定点在轴上的范围,再确定的范围即可;
(2)分类讨论,结合平行线的性质,求出或的度数即可;
(3)当点在点、之间时,过点作且交轴于点,证,得出的周长为8,再说明其他时候周长大于8即可.
(1)
解:∵的另一边一定在边的左边或上方且与轴交于点,
∴当点的坐标为(8,0)时,如图所示,此时,∠MBA=45°,
∴BN∥OC,
∴的另一边与轴没有交点,
∴点一定在(8,0)左侧,
当点与点重合时,点与点重合,此时,;当点与点重合时,点与点重合,此时,;
所以,的范围是或;
(2)
解:当点在点、之间时,此时,
∵BC∥OA,
∴,
∵∠MBN=45°,
∴,
,
∵与互余,
,
当点在点的左边时,此时,
同理可得,,
;
当点在点的右边且在(8,0)左侧时,据题意,同理可得,,
则,
;
(3)
解:当点在点、之间时,如图①,
过点作且交轴于点,
,,
,
又,,
,
,,又,,
,
,而的周长为,
当点在点的左边时,如图②,
必有,,
,
而,,故,
当点在点的右边时,如图③,则,,
,而,,
,
综上所述,只有当点在轴的正半轴上且在点的左边时,
的周长取得最小值且为8.
【点睛】
本题考查了全等三角形的判定与性质,解题关键是构建全等三角形,利用全等三角形的性质进行推理证明.
3、(1)见解析;(2)画图见解析,点P的坐标为(-5,3)
【解析】
【分析】
(1)根据平移的特点先找出D、E、F所在的位置,然后根据题意建立坐标系即可;
(2)将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点P、Q、M,即点P可以看作是点D向左平移2个单位,向上平移3个单位得到的,由此求解即可.
【详解】
解:(1)如图所示,即为所求;
(2)如图所示,△PQM即为所求;
∵P是D(-3,0)横坐标减2,纵坐标加3得到的,
∴点P的坐标为(-5,3).
【点睛】
本题主要考查了平移作图,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握点坐标平移的特点.
4、 (1) 0, 2, 9;
(2).
【解析】
【分析】
(1)根据点平移的特征是上加下减,右加左减,由点A的纵坐标0到点A′的纵坐标2,确定向上平移2个单位,由点B的横坐标3到点B′横坐标7,确定向右平移4个单位,利用平移求出A(0,0),B(3,0),C(5,5),以及A′(4,2),B′(7,2),C′(9,7),得出a=0, b=2, c=9,画出图形即可;
(2)先求出点A、B、C与A′、B′、C′坐标,描点,连线,求出三角形的底AB,和高CD,然后利用三角形面积公式计算即可
(1)
解:是经过平移得到的,由点A的纵坐标0到点A′的纵坐标2,可知是向上平移2个单位,由点B的横坐标3到点B′横坐标7,可知是向右平移4个单位,
∴点A′向左平移4个单位,再向下平移2个单位是点A,
∴a=4-4=0,点A(0,0),点A′(4,2),
∴点B向右平移4个单位,再向上平移2个单位是点B′,
∴b=0+2=2,点B′(7,2),点B(3,0),
∴点C向右平移4个单位,再向上平移2个单位是点C′,
∴c=5+4=9,C′(9,7),点C(5,5),
故答案为: 0, 2, 9;
(2)
解:由(1)得出A(0,0),B(3,0),C(5,5),A′(4,2),B′(7,2),C′(9,7),
在平面直角坐标系中描点A(0,0),B(3,0),C(5,5),顺次连结AB、BC、CA,得△ABC,
在平面直角坐标系中描点A′(4,2),B′(7,2),C′(9,7),顺次连结A′B′、B′C′、C′A′,得,
过点C作x轴的垂线交x轴于D,
AB=3-0=3,CD=5-0=5,
∴S△ABC=.
【点睛】
本题考查平面直角坐标系中点的坐标,画图,平移性质,三角形面积,两点距离公式,掌握描点画图方法,点平移的特征,两点距离公式,三角形面积公式是解题关键.
5、(1)为所求,图形见详解,点B1(-5,-1);(2)为所求,图形见详解,点B2(5,1).
【解析】
【分析】
(1)根据关于轴对称的,求出A1(-6,-6),B1(-5,-1),C1(-1,-6),然后在平面直角坐标系中描点,顺次连接A1B1, B1C1,C1A1即可;
(2)根据关于轴对称的,求出A2(6,6),点B2(5,1),点C2(1,6),
然后在平面直角坐标系中描点,顺次连接A2B2, B2C2,C2A2即可.
【详解】
解:(1)根据点在平面直角坐标系中的位置,△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),
关于轴对称的,
关于x轴对称点的特征是横坐标不变,纵坐标互为相反数,
∴中点A1(-6,-6),点B1(-5,-1),点C1(-1,-6),
在平面直角坐标系中描点A1(-6,-6),B1(-5,-1),C1(-1,-6),
顺次连接A1B1, B1C1,C1A1,
则为所求,点B1(-5,-1);
(2)∵关于轴对称的,
∴点的坐标特征是横坐标互为相反数,纵坐标不变,
∵△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),
∴中点A2(6,6),点B2(5,1),点C2(1,6),
在平面直角坐标系中描点A2(6,6),B2(5,1),C2(1,6),
顺次连接A2B2, B2C2,C2A2,
则为所求,点B2(5,1).
【点睛】
本题考查在平面直角坐标系中画称轴对称的图形,掌握画图方法,先求坐标,描点,顺次连接是解题关键.
冀教版八年级下册第十九章 平面直角坐标系综合与测试一课一练: 这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试一课一练,共27页。试卷主要包含了在平面直角坐标系中,A等内容,欢迎下载使用。
初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课时作业: 这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课时作业,共23页。试卷主要包含了在平面直角坐标系xOy中,点A,下列说法错误的是,点A关于y轴的对称点A1坐标是,如图,树叶盖住的点的坐标可能是等内容,欢迎下载使用。
冀教版八年级下册第十九章 平面直角坐标系综合与测试同步训练题: 这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试同步训练题,共24页。试卷主要包含了在平面直角坐标系中,点,在平面直角坐标系xOy中,点A,点关于轴对称点的坐标为等内容,欢迎下载使用。