数学七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课堂检测
展开这是一份数学七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课堂检测,共17页。试卷主要包含了下列说法正确的是,若,则下列式子中,错误的是,下列变形中不正确的是,若,那么下列各式中正确的是,下列说法中不正确的个数有等内容,欢迎下载使用。
第十章一元一次不等式和一元一次不等式组难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如果x>y,则下列不等式正确的是( )
A.x﹣1<y﹣1 B.5x<5y C. D.﹣2x>﹣2y
2、已知关于x的不等式组有解,则a的取值不可能是( )
A.0 B.1 C.2 D.3
3、如果a<b,c<0,那么下列不等式成立的是( )
A.a+c<b B.a﹣c>b﹣c
C.ac+1<bc+1 D.a(c﹣2)<b(c﹣2)
4、下列说法正确的是( )
A.x=3是2x+1>5的解 B.x=3是2x+1>5的唯一解
C.x=3不是2x+1>5的解 D.x=3是2x+1>5的解集
5、若,则下列式子中,错误的是( )
A. B. C. D.
6、下列各式中,是一元一次不等式的是( )
A.5+4>8 B.2x-1
C.2x≤5 D.2x+y>7
7、下列变形中不正确的是( )
A.由m>n得n<m B.由﹣a<﹣b得b<a
C.由﹣4x>1得 D.由得x>﹣3y
8、若,那么下列各式中正确的是( )
A. B.
C. D.
9、下列说法中不正确的个数有( )
①有理数的倒数是
②绝对值相等的两个数互为相反数
③绝对值既是它本身也是它的相反数的数只有0
④几个有理数相乘,若有奇数个负因数,则乘积为负数
⑤若,则
A.1个 B.2个 C.3个 D.4个
10、若关于的一元一次不等式组的解集为,且关于的方程的解为非负整数,则符合条件的所有整数的和为( )
A.2 B.7 C.11 D.10
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、中午放学后,有a个同学在学校一食堂门口等侯进食堂就餐,由于二食堂面积较大,所以配餐前二食堂等待就餐的学生人数是一食堂的2倍,开始配餐后,仍有学生续前来排队等候就餐,设一食堂排队的学生人数按固定的速度增加,且二食堂学生人数增加的速度是一食堂的2倍,两个食堂每个窗口阿姨配餐的速度是一样的,一食堂若开放12个配餐窗口,则需10分钟才可为排队就餐的同学配餐完毕;二食堂若开放2个配餐窗口,则14分钟才可为排队就餐的同学配餐完毕;若需要在15分钟内配餐完毕,则两个食堂至少需要同时一共开放___个配餐窗口.
2、不等式的解集的表示方法主要有两种:
一是用______(如x>2),即用最简单形式的不等式x>a或x<a(a为常数)表示;
另一种是用______,标出数轴上的某一区间,其中的点对应的数值都是不等式的解.这两种形式分别是用“______”和“______”表示不等式的解集.
3、用数轴表示不等式的解集,应记住下面的规律:
①大于向______画;小于向______画;
②>,<画______圆.空心圆表示______此点
4、把一些笔分给几名学生,如果每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,则共有学生___人.
5、 “x的与4的差是负数”用不等式表示:_____.
三、解答题(5小题,每小题10分,共计50分)
1、用不等式表示下列数量关系:
(1)a是正数;
(2)x比-3小;
(3)两数m与n的差大于5
2、某企业为了做好“复工复产”期间的人员防护工作,购买了一定数量的一次性防护口罩和N95口罩,这两种口罩的规格.售价如下表所示:(购买时必须整包购买)
| 数量 | 售价 |
一次性防护口罩 | 50只/包 | 100元/包 |
N95口罩 | 3只/包 | 60元/包 |
(1)已知第一批购得两种口罩共80包,其中一次性防护口罩比N95口罩多买了30包,那么N95口罩买了____包.
(2)已知第二批购得两种口罩共计3240只,花费10800元,问一次性防护口罩和N95口罩分别购买了多少包?
(3)在第三批购买时,一次性防护口罩价格有所调整,每包降低了10元,N95口罩价格不变,如果该单位第三批总共购买了100包口罩,花费不超过8100元,那么最多能购买一次性防护口罩多少包?
3、说出下列不等式变形的依据:
(1)由x-1>2,得x>3;
(2)由-2x>-4,得x<2;
(3)由-x<-1,得x>2;
(4)由3x<x,得2x<0.
4、解不等式组: ,并把解集在数轴上表示出来.
5、用适当的不等式表示下列数量关系:
(1)x与-6的和大于2;
(2)x的2倍与5的差是负数;
(3)5a与6b的差是非正数
(4)x的4倍小于3
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据不等式的性质解答.①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.
【详解】
解:A.∵x>y,
∴x﹣1>y﹣1,故本选项不符合题意;
B.∵x>y,
∴5x>5y,故本选项不符合题意;
C.∵x>y,
∴,故本选项符合题意;
D.∵x>y,
∴﹣2x<﹣2y,故本选项不符合题意;
故选:C.
【点睛】
此题考查了不等式的性质,熟记不等式的性质并正确应用是解题的关键.
2、D
【解析】
【分析】
根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出a的取值范围,然后根据a的取值范围解答即可.
【详解】
解:∵关于x的不等式组有解,
∴a<3,
∴a的取值可能是0、1或2,不可能是3.
故选D.
【点睛】
本题考查了由不等式组的解集情况求参数,不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.
3、A
【解析】
【分析】
根据不等式的性质,逐项判断即可求解.
【详解】
解:A、由a<b,c<0得到:a+c<b+0,即a+c<b,故本选项符合题意.
B、当a=1,b=2,c=﹣3时,不等式a﹣c>b﹣c不成立,故本选项不符合题意.
C、由a<b,c<0得到:ac+1>bc+1,故本选项不符合题意.
D、由于c﹣2<﹣2,所以a(c﹣2)>b(c﹣2),故本选项不符合题意.
故选:A
【点睛】
本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.
4、A
【解析】
略
5、D
【解析】
【分析】
利用不等式的基本性质逐一判断即可.
【详解】
解:A. 若,则正确,故A不符合题意;
B. 若,则正确,故B不符合题意;
C. 若,则,正确,故C不符合题意;
D. 若d,则,所以D错误,故D符合题意,
故选:D.
【点睛】
本题考查不等式的性质,掌握相关知识是解题关键.
6、C
【解析】
【分析】
从是否含有不等号,是否含有未知数,未知数的个数是否一个,这个未知数的指数是否为1,四个方面判断即可.
【详解】
∵5+4>8中,没有未知数,
∴不是一元一次不等式,A不符合题意;
∵2x-1,没有不等号,
∴不是一元一次不等式,B不符合题意;
∵2x≤5是一元一次不等式,
∴C符合题意;
∵2x+y>7中,有两个未知数,
∴不是一元一次不等式,D不符合题意;
故选C.
【点睛】
本题考查了一元一次不等式的定义即含有一个未知数且未知数的次数是1的不等式,正确理解定义是解题的关键.
7、C
【解析】
【分析】
由题意直接根据不等式的性质逐项进行分析判断即可.
【详解】
解:A、m>n,n<m,故A正确;
B、-a<-b,b<a,故B正确;
C、不等式的两边都乘以或除以同一个负数,不等号的方向改变,故C错误;
D、不等式的两边都乘以或除以同一个负数,不等号的方向改变,故D正确;
故选:C.
【点睛】
本题考查不等式的性质,注意本题考查不正确的,以防错选.
8、C
【解析】
【分析】
根据不等式的性质判断.
【详解】
解:∵,∴a+1>b+1,故选项A错误;
∵,∴-a<-b,故选项B错误;
∵,∴,故选项C正确;
∵,∴,故选项D错误;
故选:C.
【点睛】
此题考查了不等式的性质,熟记不等式的性质是解题的关键.
9、B
【解析】
【分析】
由倒数的定义可判断①,由绝对值的含义可判断②③,由有理数的乘法中积的符号确定方法可判断④,由不等式的基本性质可判断⑤,从而可得答案.
【详解】
解:因为 所以有理数的倒数是,故①正确;不符合题意
绝对值相等的两个数互为相反数或者相等,故②不正确;符合题意;
绝对值既是它本身也是它的相反数的数只有0,故③正确;不符合题意;
几个不为零有理数相乘,若有奇数个负因数,则乘积为负数,若其中一个因数为0,则结果为0,故④不正确;符合题意;
若,则,故⑤正确;不符合题意;
所以②④符合题意
故选: B.
【点睛】
本题考查的是倒数的含义,绝对值的含义,有理数乘法中积的符号确定,不等式的性质,掌握以上基础知识是解本题的关键.
10、B
【解析】
【分析】
先解关于的一元一次不等式组,再根据其解集是,得小于5;再解方程,根据其有非负整数解,得出的值,再求积即可.
【详解】
解:由,得:,
由,得:,
不等式组的解集为,
,
解得;
解关于的方程得:,
方程的解为非负整数,
或3或6或9,
解得或2或3.5或5,
所以符合条件的所有整数的和,
故选:B.
【点睛】
此题考查了解一元一次不等式组及一元一次方程的解,熟练掌握各自的解法是解本题的关键.
二、填空题
1、29
【解析】
【分析】
设每分钟来一食堂就餐的人数为x人,食堂每个窗口阿姨配餐的速度为每分钟y人,则每分钟来二食堂就餐的人数为2x人,根据“一食堂若开放12个配餐窗口,则需10分钟才可为排队就餐的同学配餐完毕;二食堂若开放20个配餐窗口,则14分钟才可为排队就餐的同学配餐完毕”,即可得出关于x,y,a的三元一次方程组,解之即可用含y的代数式表示出a,x,设设两个食堂同时一共开放m个配餐窗口,根据需要在15分钟内配餐完毕,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.
【详解】
解:设每分钟来一食堂就餐的人数为x人,食堂每个窗口阿姨配餐的速度为每分钟y人,则每分钟来二食堂就餐的人数为2x人,
依题意得:,
∴,
设两个食堂同时一共开放m个配餐窗口,
依题意得:15my≥a+2a+15×(x+2x),
解得:m≥29.
故答案为:29.
【点睛】
本题考查了三元一次方程组的应用以及一元一次不等式的应用,找准等量关系,正确列出三元一次方程组是解题的关键.
2、 式子形式 数轴 数 形
【解析】
略
3、 右 左 空心 不含
【解析】
略
4、11或12##12或11
【解析】
【分析】
根据每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,得出5x+7≥6(x-1)+1,且6(x-1)+3>5x+7,分别求出即可.
【详解】
解:假设共有学生x人,根据题意得出:
,
解得:10<x≤12.
因为x是正整数,所以符合条件的x的值是11或12,
故答案为:11或12.
【点睛】
此题主要考查了一元一次不等式组的应用,根据题意找出不等关系得出不等式组是解决问题的关键.
5、x-4<0
【解析】
【分析】
根据负数小于零列不等式解答即可.
【详解】
解:由题意得
x-4<0,
故答案为:x-4<0.
【点睛】
本题考查了列不等式表示数量关系,与列代数式问题相类似,首先要注意其中的运算及运算顺序,再就是要注意分清大于、小于、不大于、不小于的区别.
三、解答题
1、 (1)a > 0
(2)x <-3
(3)m-n >5
【解析】
略
2、 (1)25
(2)一次性防护口罩60包,N95口罩80包
(3)最多购买一次性防护口罩70包
【解析】
【分析】
(1)设第一批购得N95口罩x包,则购得一次性防护口罩(x+30)包,根据第一批购得两种口罩共80包,即可得出关于x的一元一次方程,解之即可得出结论;
(2)设第二批购得一次性防护口罩a包,N95口罩b包,根据第二批购得两种口罩共计3240只且共花费10800元,即可得出关于a,b的二元一次方程组,解之即可得出结论;
(3)设第三批购得一次性防护口罩m包,则购得N95口罩(100−m)包,根据总价=单价×数量结合总价不超过8100元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.
(1)
解:设第一批购得N95口罩x包,则购得一次性防护口罩(x+30)包,
依题意,得:x+x+30=80,
解得:x=25.
故答案为:25.
(2)
解:设第二批购得一次性防护口罩a包,N95口罩b包,
依题意,得:,
解得:.
答:第二批购得一次性防护口罩60包,N95口罩80包.
(3)
解:设第三批购得一次性防护口罩m包,则购得N95口罩(100−m)包,
依题意,得:(100−10)m+60(100−m)≤8100,
解得:m≤70.
答:第三批最多能购买一次性防护口罩70包.
【点睛】
本题考查了二元一次方程组的应用、一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出二元一次方程组;(3)根据各数量之间的关系,正确列出一元一次不等式.
3、 (1)见解析
(2)见解析
(3)见解析
(4)见解析
【解析】
【分析】
(1)根据等式两边加上(或减去)同一个数,不等号方向不变求解;
(2)根据不等式两边乘以(或除以)同一个负数,不等号方向改变求解;
(3)根据不等式两边乘以(或除以)同一个负数,不等号方向改变求解;
(4)根据等式两边加上(或减去)同一个含有字母的式子,不等号方向不变求解.
(1)
解:由x-1>2,得x>3,不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;
(2)
解:由-2x>-4,得x<2,不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;
(3)
解:由-x<-1,得x>2,不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;
(4)
解:由3x<x,得2x<0,不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.
【点睛】
本题主要考查了不等式的性质,正确掌握不等式的性质是解题关键.
4、x≤2.5,数轴见解析.
【解析】
【分析】
先分别求出两个不等式的解集,可得不等式组的解集,再在数轴上表示出来,即可求解.
【详解】
解:解不等式,得:x<5,
解不等式3(x+2)≥6﹣2(1﹣x),得:x≤2.5,
则不等式组的解集为x≤2.5,
将不等式组的解集表示在数轴上如下:
【点睛】
本题主要考查了解一元一次不等式组,熟练掌握解一元一次不等式组的基本步骤是解题的关键.
5、 (1)x-6>2
(2)2x-5<0
(3)5a-6b≤0
(4)4x<3
【解析】
【分析】
(1)根据x与−6的和得出x−6,再根据x与−6的和大于2得出x−6>2;
(2)先表示出x的2倍为2x,再表示出与5的差为2x−5,再根据关键词“是负数”,列出不等式即可;
(3)先表示出5a与6b的差是5a-6b,是非正数得出5a-6b≤0;
(4)先表示出x的4倍是4x,再根据x的4倍小于3得出4x<3.
(1)
解:根据题意得:x-6>2;
(2)
解:由题意得:2x-5<0;
(3)
解:由题意得:5a-6b≤0.
(4)
解:由题意得:4x<3.
【点睛】
本题考查了由实际问题抽象出一元一次不等式,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.
相关试卷
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试综合训练题,共19页。试卷主要包含了下列四个说法,如图,数轴上表示的解集是,下列说法中不正确的个数有,已知x=1是不等式等内容,欢迎下载使用。
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试综合训练题,共18页。试卷主要包含了现有甲,不等式的最大整数解是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试达标测试,共14页。试卷主要包含了不等式组的最小整数解是,若,则下列各式中正确的是,不等式﹣2x+4<0的解集是,不等式的最大整数解是等内容,欢迎下载使用。