![2021-2022学年度冀教版七年级数学下册第十章一元一次不等式和一元一次不等式组专项测试试题(含答案解析)第1页](http://www.enxinlong.com/img-preview/2/3/12766728/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度冀教版七年级数学下册第十章一元一次不等式和一元一次不等式组专项测试试题(含答案解析)第2页](http://www.enxinlong.com/img-preview/2/3/12766728/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度冀教版七年级数学下册第十章一元一次不等式和一元一次不等式组专项测试试题(含答案解析)第3页](http://www.enxinlong.com/img-preview/2/3/12766728/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试同步练习题
展开
这是一份数学七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试同步练习题,共21页。试卷主要包含了现有甲,下列说法中错误的是等内容,欢迎下载使用。
第十章一元一次不等式和一元一次不等式组专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、不等式﹣2x+4<0的解集是( )A.x> B.x>﹣2 C.x<2 D.x>22、下列不是不等式5x-3<6的一个解的是( )A.1 B.2 C.-1 D.-23、下列各数中,是不等式的解的是( )A.﹣7 B.﹣1 C.0 D.94、现有甲、乙两种运输车将46吨物资运往A地.甲种运输车载重5吨,乙种运输车载重4吨,每种车都不能超载.已安排甲种车5辆,要一次性完成该物资的运输,则至少安排乙种车( )辆.A.5 B.6 C.7 D.85、已知m<n,那么下列各式中,不一定成立的是( )A.2m<2n B.3﹣m>3﹣n C.mc2<nc2 D.m﹣3<n﹣16、把不等式组的解集表示在数轴上,正确的是( )A. B.C. D.7、下列说法中错误的是( )A.若,则 B.若,则C.若,则 D.若,则8、某市最高气温是33℃,最低气温是24℃,则该市气温t(℃)的变化范围是( )A.t>33 B.t≤24 C.24<t<33 D.24≤t≤339、已知关于x的不等式组的解集是3≤x≤4,则a+b的值为( )A.5 B.8 C.11 D.910、已知关于x的不等式组有解,则a的取值不可能是( )A.0 B.1 C.2 D.3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式组的解集为_______.2、不等式组的解集为____________.3、某地区有序推进疫苗接种工作,构筑新冠免疫“防护墙”.12月某天,某地区甲、乙、丙三个新冠疫苗接种点均配备了A,B,C三类疫苗,A,B,C三类疫苗每件盒数是定值.甲接种点配备A类、B类、C类疫苗分别为10件、30件、40件,乙接种点配备A类、B类、C类疫苗分别为20件、30件、20件,且甲接种点和乙接种点配备疫苗的总盒数相同.若三类疫苗每件盒数之和为95盒,且各类疫苗每件盒数均是不大于50盒的整数,C与B两类疫苗每件盒数之差大于4盒.则丙接种点分别配备A类、B类、C类疫苗分别为20件、10件、40件的总盒数为 _____盒.4、不等式的最大整数解是_______.5、全球棉花看中国,中国棉花看新疆.新疆长绒棉是世界顶级棉花,品质优,产量大,常年供不应求.某超市为了支持新疆棉花,在“五一节”进行促销活动,将新疆棉制成的A、B、C三种品牌毛巾混装成甲、乙、丙三种礼包销售,其中甲礼包包含1条A品牌毛巾、2条B品牌毛巾:乙礼包包含2条A品牌毛巾,2条B品牌毛巾,3条C品牌毛巾:丙礼包包含2条A品牌毛巾,4条C品牌毛巾,每个礼包的售价等于礼包内各条毛巾售价之和,5月1日当天,超市对A、B、C三个品牌毛巾的售价分别打8折、7折、5折销售,5月2日恢复原价,小明发现5月1日一个甲礼包的售价等于5月2日﹣个乙礼包售价的40%,5月1日一个乙礼包的售价比5月2日一个丙礼包售价少1.2元,若A、B、C三个品牌的毛巾的原价都是正整数,且B品牌毛巾的原价不超过15元,则小明在5月1日购买的一个甲礼包和一个乙礼包,应该付 _____元.三、解答题(5小题,每小题10分,共计50分)1、某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m元,售价每千克16元;乙种蔬菜进价每千克n元,售价每千克18元.(1)该超市购进甲种蔬菜15千克和乙种蔬菜20千克需要430元;购进甲种蔬菜10千克和乙种蔬菜8千克需要212元,求m,n的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x千克(x正整数),求有哪几种购买方案.2、解不等式:,并把它的解集在数轴上表示出来.3、已知:在数轴上,原点为O,点A、点B表示的数分别为a、b(a<b),点P为数轴上任意一点,若PA≤PB,则点P称为线段AB的关联点.现在点A、点B表示的数分别为−2和4,请解决以下四个问题:(1)点C、点D和点E分别表示−1、5和9,在这三个点中是线段AB关联点的是______;(2)点P表示的数为x,若点P是线段AB的关联点,则x的最大值为______;(3)点M从A点出发沿数轴向右运动,请问点B能否成为线段AM的关联点,若能,请求出点M表示的数m的最小值(不计点A和点M重合的时刻).(4)点M从A点出发,以每秒3个单位长度沿数轴向右运动,同时点N从点B出发,以每秒2个单位长度,沿数轴向右运动,设运动时间为t,请问点B能否成为线段MN点的关联点,若能,请求出t的最小值;若不能,请说明理由.4、某工厂需将产品分别运送至不同的仓库,为节约运费,考察了甲、乙两家运输公司.甲、乙公司的收费标准如下表:运输公司起步价(单位:元)里程价(单位:元/千米)甲10005乙50010(1)仓库A距离该工厂120千米,应选择哪家运输公司?(2)仓库B,C,D与该工厂的距离分别为60千米、100千米、200千米,运送到哪个仓库时,可以从甲、乙两家运输公司任选一家?(3)根据以上信息,你能给工厂提供选择甲、乙公司的标准吗?5、某企业为了做好“复工复产”期间的人员防护工作,购买了一定数量的一次性防护口罩和N95口罩,这两种口罩的规格.售价如下表所示:(购买时必须整包购买) 数量售价一次性防护口罩50只/包100元/包N95口罩3只/包60元/包(1)已知第一批购得两种口罩共80包,其中一次性防护口罩比N95口罩多买了30包,那么N95口罩买了____包.(2)已知第二批购得两种口罩共计3240只,花费10800元,问一次性防护口罩和N95口罩分别购买了多少包?(3)在第三批购买时,一次性防护口罩价格有所调整,每包降低了10元,N95口罩价格不变,如果该单位第三批总共购买了100包口罩,花费不超过8100元,那么最多能购买一次性防护口罩多少包? -参考答案-一、单选题1、D【解析】【分析】首先通过移项得到,然后利用不等式性质进一步化简即可得出答案.【详解】解:移项可得:,两边同时除以-2可得:,∴原不等式的解集为:,故选:D.【点睛】本题主要考查了解一元一次不等式,熟练掌握相关方法是解题关键.2、B【解析】略3、D【解析】【分析】移项、合并同类项,得到不等式的解集,再选取合适的x的值即可.【详解】解:移项得:,∴9为不等式的解,故选D.【点睛】本题考查的是解一元一次不等式,熟知去分母,去括号,移项,合并同类项,化系数为1是解一元一次不等式的基本步骤是解答此题的关键.4、B【解析】【分析】现用甲,乙两种运输车将46吨抗旱物资运往灾区,此题的等量关系是:甲种车运输物资数+乙种车运输物资数≥46吨.设甲种运输车至少应安排x辆,根据不等关系就可以列出不等式,求出x的值.【详解】解:设乙种车安排了x辆,4x+5×5≥46解得x≥.因为x是正整数,所以x最小值是6.则乙种车至少应安排6辆.故选:B.【点睛】本题主要考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,理解汽车的载重量与货物的数量之间的关系是解决本题的关键.5、C【解析】【分析】不等式性质1:在不等式的两边都加上或减去同一个数,不等号的方向不变,性质2:在不等式的两边都乘以或除以同一个正数,不等号的方向不变,性质3:在不等式的两边都乘以或除以同一个负数,不等号的方向改变,根据不等式的性质逐一判断即可.【详解】解:A、由m<n,根据不等式性质2,得2m<2n,本选项成立;B、由m<n,根据不等式性质3,得﹣m>﹣n,再根据不等式性质1,得3﹣m>3﹣n,本选项成立;C、因为c2≥0,当c2>0时,根据不等式性质2,得mc2<nc2,当c2=0时,mc2=nc2,本选项不一定成立;D、由m<n,根据不等式性质1,得m﹣3<n﹣2<n﹣1,本选项成立;故选:C.【点睛】本题考查的是不等式的基本性质,掌握“利用不等式的基本性质判断不等式的变形是否正确”是解本题的关键.6、D【解析】略7、C【解析】【分析】根据不等式的性质进行分析判断.【详解】解:A、若,则,故选项正确,不合题意;B、若,则,故选项正确,不合题意;C、若,若c=0,则,故选项错误,符合题意;D、若,则,故选项正确,不合题意;故选C.【点睛】本题考查了不等式的性质.解题的关键是掌握不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.8、D【解析】【分析】已知某市最高气温和最低气温,可知该市的气温的变化范围应该在最高气温和最低气温之间,且包括最高气温和最低气温.【详解】由题意,某市最高气温是33℃,最低气温是24℃,说明其它时间的气温介于两者之间,∴该市气温t(℃)的变化范围是:24≤t≤33;故选:D.【点睛】本题的关键在于准确理解题意,理解到当天的气温的变化范围应在最低气温和最低气温之间.9、C【解析】【分析】分别求出每一个不等式的解集,结合不等式组的解集求出a、b的值,代入计算即可.【详解】解:解不等式x-a≥1,得:x≥a+1,解不等式x+5≤b,得:x≤b-5,∵不等式组的解集为3≤x≤4,∴a+1=3,b-5=4,∴a=2,b=9,则a+b=2+9=11,故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10、D【解析】【分析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出a的取值范围,然后根据a的取值范围解答即可.【详解】解:∵关于x的不等式组有解,∴a<3,∴a的取值可能是0、1或2,不可能是3.故选D.【点睛】本题考查了由不等式组的解集情况求参数,不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.二、填空题1、【解析】【分析】先分别求出每一个不等式的解集,然后再根据“同大取大、同小取小、大小小大中间找、大大小小找不到”确定不等式组的解集即可.【详解】解:由,得:,由,得:,∴不等式组的解集为.故填:.【点睛】本题主要考查了解一元一次不等式组,掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的关键.2、【解析】【分析】分别解不等式,由此得到不等式组的解集.【详解】解:解不等式,得x;解不等式,得x<4,∴不等式组的解集为,故答案为.【点睛】此题考查了求不等式组的解集,正确掌握解一元一次不等式的步骤及法则是解题的关键.3、或或或或或或或或【解析】【分析】设A,B,C三类疫苗每件的盒数分别为盒,得出甲乙接种点配备A类、B类、C类疫苗的盒数,根据甲接种点和乙接种点配备疫苗的总盒数相同,列出方程,列一元一次不等式,进而解二元一次方程,求整数解即可.【详解】解:设A,B,C三类疫苗每件的盒数分别为盒,则甲接种点配备A类、B类、C类疫苗的盒数分别为盒,乙接种点配备A类、B类、C类疫苗的盒数分别为,则即①三类疫苗每件盒数之和为95盒,且各类疫苗每件盒数均是不大于50盒的整数,C与B两类疫苗每件盒数之差大于4盒,则,且都为整数解得解得则或即或或解得或皆为整数,若,则,符合题意或为整数,则时,,,时,,,时,,,时,,,时,,,时,,,时,,,时,,,时,,, ,,,,,,,,故答案为:,,,,,,,,【点睛】本题考查了二元一次方程组,一元一次不等式组的应用,求得的取值范围是解题的关键.4、2【解析】【分析】首先根据不等式求解不等式,再根据不等式的解集写出最大的整数解.【详解】解:移项,得:,合并同类项,得:,系数化成1得:,则最大整数解是:2.故答案是:2.【点睛】本题主要考查不等式的整数解,关键在于求解不等式.5、42.8【解析】【分析】根据题意可设A品牌毛巾原售价为x元,B品牌毛巾原售价为y元,C品牌毛巾原售价为z元,同时可得出5月1日各品牌毛巾打折后的价格,根据题意,可列出关于x,y,z的两个三元一次方程,经过化简,可得到三者之间的关系,然后利用B品牌毛巾售价不超过15元,且各毛巾是价格均为整数,可得三种品牌毛巾的价格,代入5月1日打折后的礼包价格求解即可.【详解】设A品牌毛巾原售价为x元,B品牌毛巾原售价为y元,C品牌毛巾原售价为z元,则5月1日,A品牌毛巾售价为0.8x元,B品牌毛巾售价为0.7y元,C品牌毛巾原售价为0.5z元.则5月1日打折后礼包售价分别为:甲礼包:(0.8x+1.4y)元;乙礼包:(1.6x+1.4y+1.5z)元;丙礼包:(1.6x+2z)元;5月2日礼包恢复原价后售价分别为:甲礼包:(x+2y)元;乙礼包:(2x+2y+3z)元;丙礼包:(2x+4z)元;根据题意可得:,解得,∵B品牌毛巾售价不超过15元,且各毛巾是价格均为整数,∴0<y≤15,∴0<2z≤15,,∵为正整数∴z只能取4,∴,则5月1日购买甲、乙礼包花费为:0.8x+1.4y+1.6x+1.4y+1.5z=2.4x+2.8y+1.5z,代入可得:2.4×6+2.8×8+1.5×4=42.8(元),故答案为:42.8.【点睛】本题主要考查三元一次方程应用及根据不等式关系确定未知数的取值,对三元一次方程组的化简及利用不等式求解是题目难点.三、解答题1、 (1)的值为10,的值为14(2)共有3种购买方案,方案1:购进58千克甲种蔬菜,42千克乙种蔬菜;方案2:购进59千克甲种蔬菜,41千克乙种蔬菜;方案3:购进60千克甲种蔬菜,40千克乙种蔬菜【解析】【分析】(1)由购进甲种蔬菜15千克和乙种蔬菜20千克的费用=430元;购进甲种蔬菜10千克和乙种蔬菜8千克的费用=212元,再列二元一次方程组解答;(2)利用投入资金不少于1160元又不多于1168元,确定不等关系列一元一次不等式组求解.(1)解:依题意,得:,解得:.答:的值为10,的值为14.(2)解:依题意,得:,解得:.又∵x为正整数,∴可以为58,59,60,∴共有3种购买方案,方案1:购进58千克甲种蔬菜,42千克乙种蔬菜;方案2:购进59千克甲种蔬菜,41千克乙种蔬菜;方案3:购进60千克甲种蔬菜,40千克乙种蔬菜.【点睛】此题考查了二元一次方程组的实际应用,一元一次不等式组的实际应用,正确理解题意是解题的关键.2、,数轴见解析【解析】【分析】先去分母,再去括号,移项、合并同类项,把的系数化为1.【详解】解:去分母得,,去括号得,,移项、合并同类项得,,把的系数化为1得,.在数轴上表示此不等式的解集如下:【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.不等式的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.3、 (1)C点(2)1(3)m的最小值为10(4)能,t的最小值为1.2.【解析】【分析】(1)根据关联点的定义进行解答便可;(2)P点在AB之间比P点在A点左边时的x值要大,再根据定义列出不等式解答便可;(3)B点在AM之间,再根据定义列出不等式解答便可;(4)用t的代数式表示M和N点表示的数,再根据关联点列出不等式组,结合定义列出方程,解答便可.(1)解:∵CA=-1-(-2)=1,CB=4-(-1)=5,∴CA<CB,∴C点是线段AB的关联点;∵DA=5-(-2)=7,DB=5-4=1,∴DA>DB,∴D点不是线段AB的关联点;∵EA=9-(-2)=11,EB=9-4=5,∴EA>EB,∴E点不是线段AB的关联点;故答案为:C点;(2)解:∵点A,点B表示的数分别为-2,4,点P表示的数为x,若点P是线段AB的关联点,∴x-(-2)≤4-x,∴x≤1,∴x的最大值为1,故答案为:1.(3)解:∵点A,点B表示的数分别为-2,4,点M表示的数为m,若点B是线段AM的关联点,∴4-(-2)≤m-4,∴m10,∴m的最小值为10;(4)解:点M表示的数为3t-2,点N表示的数为2t+4,∵点B为线段MN点的关联点,∴4-(3t-2)≤2t+4-4,∴t1.2,∴t的最小值为1.2.【点睛】本题是一个新定义题,考查了一元一次不等式,数轴上两点之间的距离,关键要读懂题意,根据新定义把新知识迁移到我们熟悉的知识来解题,主要是考查学生阅读能力,自学能力,模仿例题的能力,拓展知识的能力,是中考的常见类型,4、 (1)该工厂选择甲运输公司更划算(2)运送到C仓库时,甲、乙两家运输公司收费相同,可以任选一家(3)当仓库与工厂的距离大于100千米时,选择甲公司;当仓库与工厂的距离等于100千米时,可以从甲、乙公司中任选一家;当仓库与工厂的距离小于100千米时,选择乙公司【解析】【分析】(1)根据收费方式分别计算出甲乙公司的费用比较即可;(2)设当运输距离为x千米时,甲、乙两家运输公司收费相同,由两家公司的收费方式列方程,然后解出即可;(3)根据收费方式计算出甲公司的费用大于乙公司时的运输距离,和甲公司的费用小于于乙公司时的运输距离即可得出结论.(1)甲运输公司收费为(元),乙运输公司收费为(元).因为,所以该工厂选择甲运输公司更划算.(2)设当运输距离为x千米时,甲、乙两家运输公司收费相同.根据题意,得,解得.答:运送到C仓库时,甲、乙两家运输公司收费相同,可以任选一家.(3)当甲公司收费大于乙公司时:, ,当甲公司收费小于乙公司时:,,综上:当仓库与工厂的距离大于100千米时,选择甲公司;当仓库与工厂的距离等于100千米时,可以从甲、乙公司中任选一家;当仓库与工厂的距离小于100千米时,选择乙公司.【点睛】本题考查了一元一次方程的实际应用及一元一次不等式的应用,依据题意,正确建立方程是解题关键.5、 (1)25(2)一次性防护口罩60包,N95口罩80包(3)最多购买一次性防护口罩70包【解析】【分析】(1)设第一批购得N95口罩x包,则购得一次性防护口罩(x+30)包,根据第一批购得两种口罩共80包,即可得出关于x的一元一次方程,解之即可得出结论;(2)设第二批购得一次性防护口罩a包,N95口罩b包,根据第二批购得两种口罩共计3240只且共花费10800元,即可得出关于a,b的二元一次方程组,解之即可得出结论;(3)设第三批购得一次性防护口罩m包,则购得N95口罩(100−m)包,根据总价=单价×数量结合总价不超过8100元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.(1)解:设第一批购得N95口罩x包,则购得一次性防护口罩(x+30)包,依题意,得:x+x+30=80,解得:x=25.故答案为:25.(2)解:设第二批购得一次性防护口罩a包,N95口罩b包,依题意,得:,解得:.答:第二批购得一次性防护口罩60包,N95口罩80包.(3)解:设第三批购得一次性防护口罩m包,则购得N95口罩(100−m)包,依题意,得:(100−10)m+60(100−m)≤8100,解得:m≤70.答:第三批最多能购买一次性防护口罩70包.【点睛】本题考查了二元一次方程组的应用、一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出二元一次方程组;(3)根据各数量之间的关系,正确列出一元一次不等式.
相关试卷
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课时作业,共18页。试卷主要包含了若成立,则下列不等式成立的是,关于x的方程3﹣2x=3,下列不等式不能化成x>-2的是等内容,欢迎下载使用。
这是一份2020-2021学年第十章 一元一次不等式和一元一次不等式组综合与测试课后复习题,共17页。试卷主要包含了不等式的最小整数解是,设m为整数,若方程组的解x等内容,欢迎下载使用。
这是一份初中数学第十章 一元一次不等式和一元一次不等式组综合与测试测试题,共17页。试卷主要包含了下列命题中,假命题是等内容,欢迎下载使用。