初中数学冀教版七年级下册第九章 三角形综合与测试当堂检测题
展开这是一份初中数学冀教版七年级下册第九章 三角形综合与测试当堂检测题,共22页。试卷主要包含了下列图形中,不具有稳定性的是,如图,是的中线,,则的长为,如图,在中,若点使得,则是的等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,,,,则的度数是( )
A.10° B.15° C.20° D.25°
2、小东要从下面四组木棒中选择一组制作一个三角形作品,你认为他应该选( )组.
A.2,3,5 B.3,8,4 C.2,4,7 D.3,4,5
3、小明把一副含有45°,30°角的直角三角板如图摆放其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠a+∠β等于( )
A.180° B.210° C.360° D.270°
4、如果一个三角形的两边长都是6cm,则第三边的长不能是( )
A.3cm B.6cm C.9cm D.13cm
5、下列图形中,不具有稳定性的是( )
A. B.
C. D.
6、如图,是的中线,,则的长为( )
A. B. C. D.
7、如图,在中,若点使得,则是的( )
A.高 B.中线 C.角平分线 D.中垂线
8、将一副直角三角板按如图所示的位置摆放,若含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则的度数是( )
A.45° B.60° C.75° D.85°
9、如图,将的BC边对折,使点B与点C重合,DE为折痕,若,,则( ).
A.45° B.60° C.35° D.40°
10、若三角形的两边a、b的长分别为3和4,则其第三边c的取值范围是( )
A.3<c<4 B.2≤c≤6 C.1<c<7 D.1≤c≤7
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,将△ABC平移到△A’B’C’的位置(点B’在AC边上),若∠B=55°,∠C=100°,则∠AB’A’的度数为_____°.
2、如图,,,BE平分交AD于点E,连接CE,AF交CD的延长线于点F,,若,,则的度数为______.
3、图①是将木条用钉子钉成的四边形和三角形木架,拉动木架,观察图②中的变动情况,说一说,其中所蕴含的数学原理是_____.
4、如图,A,E,F共线,ABCD,∠A=130°,∠C=125°,则∠CEF等于_______度.
5、古希腊七贤之一,著名哲学家泰勒斯(,公元前6世纪)最早从拼图实践中发现了“三角形内角和等于”,但这种发现完全是经验性的,泰勒斯并没有给出严格的证明.之后古希腊数学家毕达哥拉斯、欧几里得、普罗科拉斯等相继给出了基于平行线性质的不同的证明.其中欧几里得利用辅助平行线和延长线,通过一组同位角和内错角证明了该定理.请同学们帮助欧几里得将证明过程补充完整.
已知:如图,在中,
试说明:.
解:延长线段至点,并过点作.
因为(已作),
所以( ),( ).
因为( ),
所以 ( ).
三、解答题(5小题,每小题10分,共计50分)
1、平行线是平面几何中最基本、也是非常重要的图形.在解决某些几何问题时,若能根据问题的需要,添加适当的平行线,往往能使证明顺畅、简洁.请根据上述思想解决问题:
(1)如图(1),ABCD,试判断∠B,∠D与∠E的关系;
(2)如图(2),已知ABCD,在∠ACD的角平分线上取两个点M、N,使得∠AMN=∠ANM,求证:∠CAM=∠BAN.
2、若AE是边BC上的高,AD是的平分线且交BC于点D.若,,分别求和的度数.
3、如图,在中,是的平分线,点在边上,且.
(Ⅰ)求证:;
(Ⅱ)若,,求的大小.
4、如图:是一个大型模板,设计要求与相交成角,与相交成角,现小燕测得,她就断定这块模板是合格的,这是为什么?
5、已知:如图,AD是△ABC的角平分线,点E在BC上,点F在CA的延长线上,EF交AB于点G,且∠AGF=∠F.求证:EF∥AD.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据平行线的性质求出关于∠DOE,然后根据外角的性质求解.
【详解】
解:∵AB∥CD,∠A=45°,
∴∠A=∠DOE=45°,
∵∠DOE=∠C+∠E,
又∵,
∴∠E=∠DOE-∠C=15°.
故选:B
【点睛】
本题比较简单,考查的是平行线的性质及三角形内角与外角的关系.掌握两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和是解题关键.
2、D
【解析】
【分析】
根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.
【详解】
解:根据三角形的三边关系,得
A、2+3=5,不能组成三角形,不符合题意;
B、3+4<8,不能够组成三角形,不符合题意;
C、2+4<7,不能够组成三角形,不符合题意;
D、3+4>5,不能够组成三角形,不符合题意.
故选:D.
【点睛】
本题主要考查了三角形三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.
3、B
【解析】
【分析】
已知,得到,根据外角性质,得到,,再将两式相加,等量代换,即可得解;
【详解】
解:如图所示,
∵,
∴,
∵,,
∴,
∵,,
∴,
∵,,
∴;
故选D.
【点睛】
本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键.
4、D
【解析】
【分析】
根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”,这样就可求出第三边长的范围,进而选出答案
【详解】
解:设它的第三条边的长度为xcm,
依题意有 ,
即,
故只有D符合题意,
故选:D.
【点睛】
本题考查的是三角形的三边关系,掌握三角形三边关系:三角形两边之和大于第三边、三角形的两边差小于第三边是解题的关键.
5、B
【解析】
【分析】
由三角形的稳定性的性质判定即可.
【详解】
A选项为三角形,故具有稳定性,不符合题意,故错误;
B选项为四边形,非三角形结构,故不具有稳定性,符合题意,故正确;
C选项为三个三角形组成的图形,属于三角形结构,故具有稳定性,不符合题意,故错误;
D选项为两个三角形组成的图形,属于三角形结构,故具有稳定性,不符合题意,故错误.
故选B.
【点睛】
本题考查了三角形的稳定性,如果三角形的三条边固定,那么三角形的形状和大小就完全确定了,三角形的这个特征,叫做三角形的稳定性注意①要看图形是否具有稳定性,关键在于它的结构是不是三角形结构②除了三角形外,其他图形都不具备稳定性,因此在生产建设中,三角形的应用非常广泛.
6、B
【解析】
【分析】
直接根据三角形中线定义解答即可.
【详解】
解:∵是的中线,,
∴BM= ,
故选:B.
【点睛】
本题考查三角形的中线,熟知三角形的中线是三角形的顶点和它对边中点的连线是解答的关键.
7、B
【解析】
【分析】
根据三角形的中线定义即可作答.
【详解】
解:∵BD=DC,
∴AD是△ABC的中线,
故选:B.
【点睛】
本题考查了三角形的中线概念,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
8、C
【解析】
【分析】
先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB可得答案.
【详解】
解:如图:
∵∠ACD=90°、∠F=45°,
∴∠CGF=∠DGB=45°,
∴∠α=∠D+∠DGB=30°+45°=75°.
故选C.
【点睛】
本题主要考查三角形的外角的性质,掌握三角形的内角和定理和三角形外角的性质是解答本题的关键.
9、A
【解析】
【分析】
由折叠得到∠B=∠BCD,根据三角形的内角和得∠A+∠B+∠ACB=180°,代入度数计算即可.
【详解】
解:由折叠得∠B=∠BCD,
∵∠A+∠B+∠ACB=180°,,,
∴65°+2∠B+25°=180°,
∴∠B=45°,
故选:A.
【点睛】
此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键.
10、C
【解析】
【分析】
根据三角形的两边之和大于第三边,两边之差小于第三边,即可求解.
【详解】
解:∵三角形的两边a、b的长分别为3和4,
∴其第三边c的取值范围是 ,
即 .
故选:C
【点睛】
本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.
二、填空题
1、25
【解析】
【分析】
先根据三角形内角和定理求出∠A=25°,然后根据平移的性质得到,则.
【详解】
解:∵∠B=55°,∠C=100°,
∴∠A=180°-∠B-∠C=25°,
由平移的性质可得,
∴,
故答案为:25.
【点睛】
本题主要考查了三角形内角和定理,平移的性质,平行线的性质,解题的关键在于能够熟练掌握平移的性质.
2、80°##80度
【解析】
【分析】
先根据,,得出,可证AD∥BC,再证∠BAD=∠BCD,得出∠AEB=∠F,然后证∠ABC=2∠CBE=2∠F,得出∠ADC=2∠F,利用三角形内角和得出∠CED=180°-∠EDC-∠ECD=180°-2∠F-3∠F=180°-5∠F,根据平角得出∠AEB+∠CED=180°-∠BEC=180°-80°=100°,列方程∠F+180°-5∠F=100°求出∠F=20°即可.
【详解】
解:∵,
∴∠ABC+∠BCD=180°,
∵
∴,
∴AD∥BC,
∵,
∴∠BAD+∠ADC=180°,∠BAF+∠F=180°,
∵∠ADC+∠BCD=180°,
∴∠BAD=∠BCD,
∵,
∴,
∵∠BAF=∠BAD+∠DAF,
∴∠BAF+∠AEB=180°,
∴∠AEB=∠F,
∵AD∥BC,
∴∠CBE=∠AEB,
∵BE平分,
∴∠ABC=2∠CBE=2∠F,
∴∠ADC=2∠F,
∵,
在△CED中,∠CED=180°-∠EDC-∠ECD=180°-2∠F-3∠F=180°-5∠F,
∵,
∴∠AEB+∠CED=180°-∠BEC=180°-80°=100°,
∴∠F+180°-5∠F=100°,
解得∠F=20°,
∴,
故答案为80°.
【点睛】
本题考查平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,掌握平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,关键是证出∠ADC=2∠F.
3、三角形具有稳定性,四边形具有不稳定性
【解析】
【分析】
根据三角形的稳定性和四边形的不稳定性解答.
【详解】
由图示知,四边形变形了,而三角形没有变形,其中所蕴含的数学原理是三角形具有稳定性,四边形具有不稳定性.
故答案是:三角形具有稳定性,四边形具有不稳定性.
【点睛】
本题考查了三角形的稳定性和四边形具有不稳定性,关键抓住图中图形是否变形,从而判断是否具有稳定性.
4、75
【解析】
【分析】
根据平行线的性质求出∠BDC,求出∠FDE,根据三角形内角和定理求出即可.
【详解】
解:连接AC,如图:
∵AB∥CD,
∴∠BAC+∠DCA=180°,
∵∠BAF=130°,∠DCE=125°,
∴(∠CAF+∠ACE)+(∠BAC+∠DCA)=130°+125°=255°,
∴∠CAF+∠ACE=255°-(∠BAC+∠DCA)=255°+180°=75°,
∵∠CEF是△ACE外角,
∴∠CEF=∠CAF+∠ACE=75°.
故答案为:75.
【点睛】
本题主要考查了平行线的性质.解题的关键是掌握平行线的性质:两直线平行,同旁内角互补.
5、两直线平行,内错角相等;两直线平行,同位角相等;平角的定义;A;B;等量代换;见解析
【解析】
【分析】
根据平行线的性质以及平角的定义可解决问题.
【解答】
解:延长线段至点,并过点作.
因为(已作),
所以(两直线平行,内错角相等),(两直线平行,同位角相等).
因为(平角的定义),
所以(等量代换).
故答案为:两直线平行,内错角相等;两直线平行,同位角相等;平角的定义;;;等量代换.
【点评】
本题考查三角形内角和定理的推理过程,掌握平行线的性质是解题关键.
三、解答题
1、(1)∠BED=∠B+∠D;(2)证明见详解.
【解析】
【分析】
(1)作EF∥AB,证明AB∥EF∥CD,得到∠B=∠BEF,∠D=∠DEF,即可证明∠BED=∠B+∠D;
(2)根据(1)结论得到∠N=∠BAN+∠DCN,进而得到∠AMN=∠BAN+∠DCN,根据三角形外角定理得到∠AMN=∠ACM+∠CAM,∠BAN+∠DCN=∠ACM+∠CAM,再根据∠DCN=∠CAN,即可证明∠CAM=∠BAN.
【详解】
解:如图1,作EF∥AB,
∵AB∥CD,
∴AB∥EF∥CD,
∴∠B=∠BEF,∠D=∠DEF,
∵∠BED=∠BEF+∠DEF,
∴∠BED=∠B+∠D;
(2)证明:∵AB∥CD,
∴由(1)得∠N=∠BAN+∠DCN,
∵∠AMN=∠ANM,
∴∠AMN=∠BAN+∠DCN,
∵∠AMN是△ACM外角,
∴∠AMN=∠ACM+∠CAM,
∴∠BAN+∠DCN=∠ACM+∠CAM,
∵CN平分∠ACD,
∴∠DCN=∠CAN,
∴∠CAM=∠BAN.
【点睛】
本题考查了平行线的性质,角平分线的定义,三角形的外角定理等知识,熟知相关定理并根据题意添加辅助线进行角的转化是解题关键.
2、;
【解析】
【分析】
根据△AEC的内角和定理可得:,根据角平分线的性质可得,根据△ABC的内角和定理可得∠BAC,又因为,,即可得解.
【详解】
解:∵AE是边BC上的高
∴
∴在中,有
又∵
∴
∵AD是的平分线
∴
∵在中,有
已知,
∴
∴
∴
【点睛】
本题考查了三角形内角和定理及角平分线的性质,熟悉这些知识点,灵活应用等量代换是解决本题的关键.
3、(Ⅰ)见解析;(Ⅱ)
【解析】
【分析】
(Ⅰ)由CD是的平分线得出,由得出
从而得出,由平行线的判断即可得证;
(Ⅱ)由三角形内角和求出,由角平分线得出,由三角形内角和求出即可得出答案.
【详解】
(Ⅰ)∵CD是的平分线,
∴,
∵,
∴,
∴,
∴;
(Ⅱ)∵,,
∴,
∴,
∴.
【点睛】
本题考查平行线的判定以及三角形内角和定理,掌握相关知识是解题的关键
4、合格,理由见解析
【解析】
【分析】
延长,相交于点F,延长,相交于点E,然后根据三角形内角和定理求解即可.
【详解】
解:如图,延长,相交于点F,延长,相交于点E,
∵,
∴,
∵,
∴,
∴这块模板是合格的.
【点睛】
本题主要考查了三角形内角和定理,解题的关键在于能够熟练掌握三角形内角和定理.
5、见解析
【解析】
【分析】
利用角平分线得到∠BAD=∠CAD,根据三角形外角的性质推出∠CAD=∠F,即可得到结论.
【详解】
∵AD是△ABC的角平分线,
∴∠BAD=∠CAD,
又∵∠BAD+∠CAD=∠AGF+∠F,且∠AGF=∠F,
∴∠CAD=∠F,
∴.
【点睛】
此题考查了角平分线的计算,三角形外角性质,平行线的判定定理,熟记平行线的判定定理是解题的关键.
相关试卷
这是一份数学七年级下册第九章 三角形综合与测试综合训练题,共22页。试卷主要包含了下列各图中,有△ABC的高的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试练习,共23页。试卷主要包含了如图,在中,,,则外角的度数是,若三角形的两边a等内容,欢迎下载使用。
这是一份2020-2021学年第九章 三角形综合与测试一课一练,共21页。试卷主要包含了如图,点D,若三角形的两边a,下列各图中,有△ABC的高的是,定理等内容,欢迎下载使用。