![2022年最新精品解析冀教版七年级数学下册第九章 三角形单元测试试卷(无超纲带解析)第1页](http://www.enxinlong.com/img-preview/2/3/12767207/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版七年级数学下册第九章 三角形单元测试试卷(无超纲带解析)第2页](http://www.enxinlong.com/img-preview/2/3/12767207/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版七年级数学下册第九章 三角形单元测试试卷(无超纲带解析)第3页](http://www.enxinlong.com/img-preview/2/3/12767207/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版七年级下册第九章 三角形综合与测试单元测试一课一练
展开这是一份冀教版七年级下册第九章 三角形综合与测试单元测试一课一练,共21页。试卷主要包含了如图,,如图,,,,则的度数是,如图,已知,,,则的度数为等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形单元测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是( )
A.两点确定一条直线
B.两点之间,线段最短
C.三角形具有稳定性
D.三角形的任意两边之和大于第三边
2、已知三角形的两边长分别为2cm和3cm,则第三边长可能是( )
A.6cm B.5cm C.3cm D.1cm
3、在△ABC中,∠A=50°,∠B、∠C的平分线交于O点,则∠BOC等于( )
A.65° B.80° C.115° D.50°
4、如图, ( )
A.180° B.360° C.270° D.300°
5、如图,把△ABC绕顶点C按顺时针方向旋转得到△A′B′C′,当A′B′⊥AC,∠A=50°,∠A′CB=115°时,∠B′CA的度数为( )
A.30° B.35° C.40° D.45°
6、如图,,,,则的度数是( )
A.10° B.15° C.20° D.25°
7、有下列长度的三条线段,其中能组成三角形的是( )
A.4,5,9 B.2.5,6.5,10 C.3,4,5 D.5,12,17
8、如图,已知,,,则的度数为( )
A.155° B.125° C.135° D.145°
9、如图,在△ABC中,AD是△ABC的中线,△ABD的面积为3,则△ABC的面积为( )
A.8 B.7 C.6 D.5
10、下列长度的三条线段能组成三角形的是( )
A.3,6,9 B.5,6,8 C.1,2,4 D.5,6,15
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且S△BEF=2cm2,则S△ABC=__________.
2、在ABC中,AD⊥BC于点D,BD=CD,若BC=6,AD=4,则图中阴影部分的面积为__________.
3、如图,在△ABC中,∠C=62°,△ABC两个外角的角平分线相交于G,则∠G的度数为_____.
4、如图,从A处观测C处的仰角是,从B处观测C处的仰角,则从C处观测A,B两处的视角的度数是__________.
5、等腰三角形的一条边长为4cm,另一条边长为6cm,则它的周长是________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,BD是的角平分线,BE是的AC边上的中线.
(1)若的周长为13,,,求AB的长.
(2)若,,求的度数.
2、若AE是边BC上的高,AD是的平分线且交BC于点D.若,,分别求和的度数.
3、如图,AD是△ABC的边BC上的中线,已知AB=5,AC=3.
(1)边BC的取值范围是 ;
(2)△ABD与△ACD的周长之差为 ;
(3)在△ABC中,若AB边上的高为2,求AC边上的高.
4、如图,在直角三角形ABC中,∠BAC=90°,AD是BC边上的高,CE是AB边上的中线,AB=12cm,BC=20cm,AC=16cm,求:
(1)AD的长;
(2)△BCE的面积.
5、已知:如图,在△ABC中,AB=3,AC=5.
(1)直接写出BC的取值范围是 .
(2)若点D是BC边上的一点,∠BAC=85°,∠ADC=140°,∠BAD=∠B,求∠C.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据三角形具有稳定性进行求解即可.
【详解】
解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,
故选C.
【点睛】
本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.
2、C
【解析】
【分析】
根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.
【详解】
解:设第三边长为xcm,根据三角形的三边关系可得:
3-2<x<3+2,
解得:1<x<5,
只有C选项在范围内.
故选:C.
【点睛】
本题考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.
3、C
【解析】
【分析】
根据题意画出图形,求出∠ABC+∠ACB =130°,根据角平分线的定义得到∠CBD=∠ABC,∠ECB=∠ACB,再根据三角形内角和定理和角的代换即可求解.
【详解】
解:如图,∵∠A=50°,
∴∠ABC+∠ACB=180°-∠A=130°,
∵BD、CE分别是∠ABC、∠ACB的平分线,
∴∠CBD=∠ABC,∠ECB=∠ACB,
∴∠BOC=180°-∠CBD-∠ECB=180°-(∠CBD+∠ECB)=180°- (∠ABC+∠ACB)=180°- ×130°=115°.
故选:C
【点睛】
本题考查了三角形内角和定理,角平分线的定义,熟知三角形内角和定理,并能根据角平分线的定义进行角的代换是解题关键.
4、A
【解析】
【分析】
利用三角形外角定理及三角形内角和公式求解即可.
【详解】
解:
∵∠7=∠4+∠2,∠6=∠1+∠3,
∴∠6+∠7=∠1+∠2+∠3+∠4,
∵∠5+∠6+∠7=180°,
∴∠1+∠2+∠3+∠4+∠5=180°.
故选:A.
【点睛】
本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.
5、B
【解析】
【分析】
由旋转的性质可得∠A′=∠A=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠A′CA=40°,即可求解.
【详解】
解:根据旋转的性质可知∠A′=∠A=50°,∠BCB'=∠ACA',
∴∠A′CA=90°﹣50°=40°,
∴∠BCB′=∠A′CA=40°,
∴∠B′CA=∠A′CB﹣∠A′CA﹣∠BCB′=115°﹣40°﹣40°=35°.
故选:B.
【点睛】
本题主要考查了旋转的性质,三角形内角和定理的应用,解决这类问题要找准旋转角、以及旋转后对应的线段和角.
6、B
【解析】
【分析】
根据平行线的性质求出关于∠DOE,然后根据外角的性质求解.
【详解】
解:∵AB∥CD,∠A=45°,
∴∠A=∠DOE=45°,
∵∠DOE=∠C+∠E,
又∵,
∴∠E=∠DOE-∠C=15°.
故选:B
【点睛】
本题比较简单,考查的是平行线的性质及三角形内角与外角的关系.掌握两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和是解题关键.
7、C
【解析】
【分析】
根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行逐一分析即可.
【详解】
解:根据三角形的三边关系,得,
、,不能够组成三角形,不符合题意;
、,不能够组成三角形,不符合题意;
、,能够组成三角形,符合题意;
、,不能组成三角形,不符合题意;
故选:C.
【点睛】
此题主要考查了三角形三边关系,解题的关键是掌握判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.
8、B
【解析】
【分析】
根据三角形外角的性质得出,再求即可.
【详解】
解:∵,
∴,
∵,
∴,
∴;
故选:B.
【点睛】
本题考查了三角形外角的性质,解题关键是准确识图,理清角之间的关系.
9、C
【解析】
【分析】
根据三角形的中线将三角形的面积分成相等的两部分即可求解.
【详解】
解:∵△ABC中,AD是BC边上的中线,△ABD的面积为3,
∴△ABC的面积=3×2=6.
故选:C.
【点睛】
考查了三角形的面积,关键是熟悉三角形的中线将三角形的面积分成相等的两部分的知识点.
10、B
【解析】
【分析】
根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行解答即可得.
【详解】
解:根据三角形的三边关系,得
A、3+6=9,不能组成三角形,选项说法错误,不符合题意;
B、6+5=11>8,能组成三角形,选项说法正确,符合题意;
C、1+2=3<4,不能够组成三角形,选项说法错误,不符合题意;
D、5+6=11<15,不能够组成三角形,选项说法错误,不符合题意;
故选B.
【点睛】
本题考查了构成三角形的条件,解题的关键是掌握三角形的三边关系.
二、填空题
1、8cm2
【解析】
【分析】
由于三角形的中线将三角形分成面积相等的两部分,则S△CFB=S△EFB=2cm2,于是得到S△CEB=4cm2,再求出S△BDE=2cm2,利用E点为AD的中点得到S△ABD=2S△BDE=4cm2,然后利用S△ABC=2S△ABD求解.
【详解】
解:∵F点为CE的中点,
∴S△CFB=S△EFB=2cm2,
∴S△CEB=4cm2,
∵D点为BC的中点,
∴S△BDE=S△BCE=2cm2,
∵E点为AD的中点,
∴S△ABD=2S△BDE=4cm2,
∴S△ABC=2S△ABD=8cm2.
故答案为:8cm2.
【点睛】
本题考查了三角形的中线,根据三角形的中线等分三角形的面积是解本题的关键.
2、6
【解析】
【分析】
如图,先标注字母,证明可得从而可得结论.
【详解】
解:如图,先标注字母,
AD⊥BC于点D,BD=CD,
BC=6,AD=4,
故答案为:6
【点睛】
本题考查的是三角形的高,中线与面积的关系,掌握“三角形的中线把三角形的面积分为相等的两部分”是解本题的关键.
3、59°##59度
【解析】
【分析】
先利用三角形内角和定理求出∠CAB+∠CBA=180°-∠C=118°,从而利用三角形外角的性质求出∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,再由角平分线的定义求出,由此求解即可.
【详解】
解:∵∠C=62°,
∴∠CAB+∠CBA=180°-∠C=118°,
∵∠DAB=∠C+∠CBA,∠EBA=∠C+∠CAB,
∴∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,
∵△ABC两个外角的角平分线相交于G,
∴,,
∴,
∴∠G=180°-∠GAB-∠GBA=59°,
故答案为:59°.
【点睛】
本题主要考查了三角形内角和定理,三角形外角的性质,角平分线的定义,熟知相关知识是解题的关键.
4、
【解析】
【分析】
根据三角形外角的性质求解即可.
【详解】
解:由题意可得,,
∴,
故答案为:
【点睛】
此题考查了三角形外角的性质,解题的关键是掌握三角形外角的有关性质.
5、16cm或14cm##14cm或16cm
【解析】
【分析】
根据题意分腰为6cm和底为6cm两种情况,分别求出即可.
【详解】
解:①当腰为6cm时,它的周长为6+6+4=16(cm);
②当底为6cm时,它的周长为6+4+4=14(cm);
故答案为:16cm或14cm.
【点睛】
本题考查了等腰三角形的性质的应用,注意:等腰三角形的两腰相等,注意分类讨论.
三、解答题
1、(1)3;(2).
【解析】
【分析】
(1)首先根据中线的性质得到,然后根据的周长为13,即可求出AB的长;
(2)首先根据BD是的角平分线得到,然后根据三角形内角和定理即可求出的度数.
【详解】
(1)∵BE是的AC边上的中线,
∴,
又∵的周长为13,
∴;
(2)∵BD是的角平分线,
∴,
又∵,
∴.
【点睛】
此题考查三角形中线和角平分线的概念,三角形内角和定理的运用,解题的关键是熟练掌握三角形中线和角平分线的概念,三角形内角和定理.
2、;
【解析】
【分析】
根据△AEC的内角和定理可得:,根据角平分线的性质可得,根据△ABC的内角和定理可得∠BAC,又因为,,即可得解.
【详解】
解:∵AE是边BC上的高
∴
∴在中,有
又∵
∴
∵AD是的平分线
∴
∵在中,有
已知,
∴
∴
∴
【点睛】
本题考查了三角形内角和定理及角平分线的性质,熟悉这些知识点,灵活应用等量代换是解决本题的关键.
3、(1);(2);(3).
【解析】
【分析】
(1)直接根据三角形三边关系进行解答即可;
(2)根据三角形中线将△ABD与△ACD的周长之差转换为和的差即可得出答案;
(3)设AC边上的高为,根据三角形面积公式列出方程求解即可.
【详解】
解:(1)∵△ABC中AB=5,AC=3,
∴,
即,
故答案为:;
(2)∵△ABD的周长为,
△ACD的周长为,
∵AD是△ABC的边BC上的中线,
∴,
∴-()=,
故答案为:;
(3)设AC边上的高为,
根据题意得:,
即,
解得.
【点睛】
本题考查了三角形三边关系,三角形的中线,三角形的高等知识点,熟练掌握基础知识是解本题的关键.
4、(1);(2)48.
【解析】
【分析】
(1)利用面积法得到AD•BC=AB•AC,然后把AB=12cm,BC=20cm,AC=16cm代入可求出AD的长;
(2)由于三角形的中线将三角形分成面积相等的两部分,所以S△BCE=S△ABC.
【详解】
解:(1)∵∠BAC=90°,AD是BC边上的高,
∴AD•BC=AB•AC,
∴AD==(cm);
(2)∵CE是AB边上的中线,
∴S△BCE=S△ABC=××12×16=48(cm2).
【点睛】
本题考查三角形中线的性质,涉及等积法,是重要考点,掌握相关知识是解题关键.
5、(1)2<BC<8;(2)25°
【解析】
【分析】
(1)根据三角形三边关系解答即可;
(2)根据三角形外角性质和三角形内角和解答即可.
【详解】
解:(1)∵AC-AB<BC<AC+AB,AB=3,AC=5.
∴2<BC<8,
故答案为:2<BC<8
(2)∵∠ADC是△ABD的外角
∴∠ADC=∠B+∠BAD=140
∵∠B=∠BAD
∴∠B=
∵∠B+∠BAC+∠C=180
∴∠C=180﹣∠B﹣∠BAC
即∠C=180﹣70﹣85=25
【点睛】
本题考查了三角形第三边的取值范围,三角形内角和定理和三角形外角的性质,能根据三角形的外角的性质求出∠B的度数是解此题的关键.
相关试卷
这是一份冀教版七年级下册第九章 三角形综合与测试习题,共20页。试卷主要包含了如图,点D等内容,欢迎下载使用。
这是一份冀教版七年级下册第九章 三角形综合与测试课时练习,共22页。
这是一份冀教版七年级下册第九章 三角形综合与测试课后作业题,共27页。