![【真题汇编】2022年福建省厦门市中考数学历年真题定向练习 卷(Ⅰ)(精选)01](http://www.enxinlong.com/img-preview/2/3/12767484/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【真题汇编】2022年福建省厦门市中考数学历年真题定向练习 卷(Ⅰ)(精选)02](http://www.enxinlong.com/img-preview/2/3/12767484/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【真题汇编】2022年福建省厦门市中考数学历年真题定向练习 卷(Ⅰ)(精选)03](http://www.enxinlong.com/img-preview/2/3/12767484/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
【真题汇编】2022年福建省厦门市中考数学历年真题定向练习 卷(Ⅰ)(精选)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、质检部门从同一批次1000件产品中随机抽取100件进行检测,检测出次品3件,由此估计这一批次产品中次品件数是( )
A.60B.30C.600D.300
2、若,则的值为( )
A.B.8C.D.
3、已知4个数:,,,,其中正数的个数有( )
A.1B. C.3D.4
4、平面直角坐标系中,点P(2,1)关于x轴对称的点的坐标是( )
A.B.C.D.
5、菱形ABCD的周长是8cm,∠ABC=60°,那么这个菱形的对角线BD的长是( )
A.cmB.2cmC.1cmD.2cm
6、若实数m使关于x的不等式组有解且至多有3个整数解,且使关于y的分式方程1的解满足﹣3≤y≤4,则满足条件的所有整数m的和为( )
A.17B.20C.22D.25
7、若单项式与是同类项,则的值是( )
A.6B.8C.9D.12
8、若关于x的不等式组有且仅有3个整数解,且关于y的方程的解为负整数,则符合条件的整数a的个数为( )
A.1个B.2个C.3个D.4个
9、多项式去括号,得( )
A.B.C.D.
10、下列方程中,关于x的一元二次方程的是( )
A.x2-1=2xB.x3+2x2=0C.D.x2-y+1=0
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、桌子上放有6枚正面朝上的硬币,每次翻转其中的4枚,至少翻转_________次能使所有硬币都反面朝上.
2、在同一平面上,外有一点P到圆上的最大距离是8cm,最小距离为2cm,则的半径为______cm.
3、近似数精确到____________位.
4、用长的铁丝,折成一个面积是的矩形,则这个矩形的长和宽分别为_______.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
5、如图,BD是△ABC的角平分线,E是AB上的中点,已知△ABC的面积是12cm2,BC:AB=19:17,则△AED面积是 _____.
三、解答题(5小题,每小题10分,共计50分)
1、如图①,,AD与BC相交于点M,点H在BD上.求证:.
小明的部分证明如下:
证明:∵,
∴,
∴
同理可得:______,
……
(1)请完成以上的证明(可用其他方法替换小明的方法);
(2)求证:;
(3)如图②,正方形DEFG的顶点D、G分别在的边AB、AC上,E、F在边BC上,,交DG于M,垂足为N,求证:.
2、用一面足够长的墙为一边,其余各边用总长42米的围栏建成如图所示的生态园,中间用围栏隔开.由于场地限制,垂直于墙的一边长不超过7米.(围栏宽忽略不计)
(1)若生态园的面积为144平方米,求生态园垂直于墙的边长;
(2)生态园的面积能否达到150平方米?请说明理由.
3、如图,的长方形网格中,网格线的交点叫做格点.点A,B,C都是格点.请按要求解答下列问题:
平面直角坐标系xOy中,点A,B的坐标分别是(-3,1),(-1,4),
(1)①请在图中画出平面直角坐标系xOy;
②点C的坐标是 ,点C关于x轴的对称点的坐标是 ;
(2)设l是过点C且平行于y轴的直线,
①点A关于直线l的对称点的坐标是 ;
②在直线l上找一点P,使最小,在图中标出此时点P的位置;
③若Q(m,n)为网格中任一格点,直接写出点Q关于直线l的对称点的坐标(用含m,n的式子表示).
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
4、计算:.
5、计算:
(1)
(2)
-参考答案-
一、单选题
1、B
【分析】
根据样本的百分比为,用1000乘以3%即可求得答案.
【详解】
解:∵随机抽取100件进行检测,检测出次品3件,
∴估计1000件产品中次品件数是
故选B
【点睛】
本题考查了根据样本求总体,掌握利用样本估计总体是解题的关键.
2、D
【分析】
根据多项式乘以多项式展开,根据多项式相等即可求得对应字母的值,进而代入代数式求解即可.
【详解】
解:,
,
,,
,,
解得:,,
.
故选:D.
【点睛】
本题考查了多项式乘以多项式,负整数指数幂,掌握以上知识是解题的关键.
3、C
【分析】
化简后根据正数的定义判断即可.
【详解】
解:=1是正数,=2是正数,=1.5是正数,=-9是负数,
故选C.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查了有理数的乘方、相反数、绝对值的意义,以及正负数的意义,正确化简各数是解答本题的关键.
4、B
【分析】
直接利用关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,得出答案.
【详解】
解:点P(2,1)关于x轴对称的点的坐标是(2,-1).
故选:B.
【点睛】
本题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.
5、B
【分析】
由菱形的性质得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再证△ABC是等边三角形,得AC=AB=2(cm),则OA=1(cm),然后由勾股定理求出OB=(cm),即可求解.
【详解】
解:∵菱形ABCD的周长为8cm,
∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,
∵∠ABC=60°,
∴△ABC是等边三角形,
∴AC=AB=2cm,
∴OA=1(cm),
在Rt△AOB中,由勾股定理得:OB===(cm),
∴BD=2OB=2(cm),
故选:B.
【点睛】
此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法.
6、B
【分析】
根据不等式组求出m的范围,然后再根据分式方程求出m的范围,从而确定的m的可能值.
【详解】
解:由不等式组可知:x≤5且x≥,
∵有解且至多有3个整数解,
∴2<≤5,
∴2<m≤8,
由分式方程可知:y=m-3,
将y=m-3代入y-2≠0,
∴m≠5,
∵-3≤y≤4,
∴-3≤m-3≤4,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵m是整数,
∴0≤m≤7,
综上,2<m≤7,
∴所有满足条件的整数m有:3、4、6、7,共4个,
和为:3+4+6+7=20.
故选:B.
【点睛】
本题考查了学生的计算能力以及推理能,解题的关键是根据不等式组以及分式方程求出m的范围,本题属于中等题型.
7、C
【分析】
根据同类项的定义可得,代入即可求出mn的值.
【详解】
解:∵与是同类项,
∴,
解得:m=3,
∴.
故选:C.
【点睛】
此题考查了同类项的定义,解题的关键是熟练掌握同类项的定义.同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也相同,那么就称这两个单项式为同类项.
8、C
【分析】
解不等式组得到,利用不等式组有且仅有3个整数解得到,再解分式方程得到,根据解为负整数,得到a的取值,再取共同部分即可.
【详解】
解:解不等式组得:,
∵不等式组有且仅有3个整数解,
∴,
解得:,
解方程得:,
∵方程的解为负整数,
∴,
∴,
∴a的值为:-13、-11、-9、-7、-5、-3,…,
∴符合条件的整数a为:-13,-11,-9,共3个,
故选C.
【点睛】
本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.
9、D
【分析】
利用去括号法则变形即可得到结果.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:−2(x−2)=-2x+4,
故选:D.
【点睛】
本题考查了去括号与添括号,掌握如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反是解题的关键.
10、A
【分析】
只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断.
【详解】
解:A、只含有一个未知数,未知数的最高次数是2,二次项系数不为0,是一元二次方程,符合题意;
B、未知数最高次数是3,不是关于x的一元二次方程,不符合题意;
C、为分式方程,不符合题意;
D、含有两个未知数,不是一元二次方程,不符合题意
故选:A.
【点睛】
本题考查了一元二次方程的定义,一元二次方程只含有一个未知数,未知数的最高次数是2,为整式方程;特别注意二次项系数不为0.
二、填空题
1、3
【分析】
用“”表示正面朝上,用“”表示正面朝下,找出最少翻转次数能使杯口全部朝下的情况即可得答案
【详解】
用“”表示正面朝上,用“”表示正面朝下,
开始时
第一次
第二次
第三次
至少翻转3次能使所有硬币都反面朝上.
故答案为:3
【点睛】
本题考查了正负数的应用,根据朝上和朝下的两种状态对应正负号,尝试最少的次数满足题意是解题的关键.
2、5或3
【分析】
分点P在圆内或圆外进行讨论.
【详解】
解:①当点P在圆内时,⊙O的直径长为8+2=10(cm),半径为5cm;
②当点P在圆外时,⊙O的直径长为8-2=6(cm),半径为3cm;
综上所述:⊙O的半径长为 5cm或3cm.
故答案为:5或3.
【点睛】
本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
心距离与半径的关系可以确定该点与圆的位置关系.
3、百
【分析】
一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.
【详解】
解:∵104是1万,6位万位,0为千位,5为百位,
∴近似数6.05×104精确到百位;
故答案为百.
【点睛】
此题考查近似数与有效数字,解题关键在于掌握从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.最后一位所在的位置就是精确度.
4、6cm,5cm
【分析】
设长是x厘米,则宽是(11-x)cm,根据矩形的面积公式即可列出方程求解.
【详解】
解:设长是x厘米,则宽是(11-x)cm,
根据题意得:x(11-x)=30,
整理得
解得:x1=5,x2=6,
则当x=5时,11-x=6(cm);
当x=6时,11-x=5(cm),
则长是6cm,宽是5cm,
故答案为6cm,5cm.
【点睛】
本题考查了一元二次方程的应用,熟练掌握长方形的面积公式、正确理解相等关系是解题的关键.
5、
【分析】
根据角平分线的性质得出DF=DG,再由三角形面积计算即可得答案.
【详解】
解:作DG⊥AB,交AB的延长线于点D,作DF⊥BC,
∴BD是△ABC的角平分线,
∴DF=DG,
∵BC:AB=19:17,
设DF=DG=h,BC=19a,AB=17a,
∵△ABC的面积是12cm2,
∴,
∴,
∴36ah=24,
∴ah=,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵E是AB上的中点,
∴AE=,
∴△AED面积=×h=(cm2).
故答案为:cm2.
【点睛】
本题考查了根据角平分线的性质和三角形面积的计算,做题的关键是掌握角平分线的性质.
三、解答题
1、
(1)见解析
(2)见解析
(3)见解析
【分析】
(1)根据题意证明,,进而根据相似三角形对应边成比例,列出比例式,进而根据分式的性质化简即可得证;
(2)分别过点分别作垂直于,垂足分别为,根据(1)证明高的比的关系,进即可证明
(3)根据正方形的性质可得,进而可得,由,根据分式的性质即可证明.
(1)
证明:∵,
∴,
∴,
(2)
如图,分别过点分别作垂直于,垂足分别为,
∵,
∴,
∴,
(3)
四边形是正方形
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,,
【点睛】
本题考查了相似三角形的性质与判定,分式的性质,掌握相似三角形的性质与判定是解题的关键.
2、
(1)6米
(2)不能达到,理由见解析
【分析】
(1)设生态园垂直于墙的边长为x米,则可得生态园平行于墙的边长,从而由面积关系即可得到方程,解方程即可;
(2)方法与(1)相同,判断所得方程有无解即可.
(1)
设生态园垂直于墙的边长为x米,则x≤7,生态园平行于墙的边长为(42-3x)米
由题意得:x(42-3x)=144
即
解得:(舍去)
即生态园垂直于墙的边长为6米.
(2)
不能,理由如下:
设生态园垂直于墙的边长为y米,则生态园平行于墙的边长为(42-3y)米
由题意得:y(42-3y)=150
即
由于
所以此一元二次方程在实数范围内无解
即生态园的面积不能达到150平方米.
【点睛】
本题考查了一元二次方程在实际生活中的应用,理解题意并根据等量关系正确列出方程是解题的关键.
3、(1)作图见解析,(1,2),(1,-2);(2)①(5,1);②P点位置见解析;③(2-m,n)
【分析】
(1)由A、B点坐标即可知x轴和y轴的位置,即可从图像中得知C点坐标,而的横坐标不变,纵坐标为C点纵坐标的相反数.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)由C点坐标(1,2)可知直线l为x=1
①点是点A关于直线l的对称点,由横坐标和点A横坐标之和为2,纵坐标不变,即可求得坐标为(5,1).
②由①可得点A关于直线l的对称点,连接B交l于点P,由两点之间线段最短即可知点P为所求点.
③设点Q(m,n)关于l的对称点为(x,y),则有(m+x)÷2=1,y=n,即可求得对称点(2-m,n)
【详解】
(1)平面直角坐标系xOy如图所示
由图象可知C点坐标为(1,2)
点是 C点关于x轴对称得来的
则的横坐标不变,纵坐标为C点纵坐标的相反数
即点坐标为(1,-2).
(2)如图所示,由C点坐标(1,2)可知直线l为x=1
①A点坐标为(-3,1),
关于直线x=1对称的坐标横坐标与A点横坐标坐标和的一半为1,纵坐标不变
则为坐标为(5,1)
②连接①所得B,B交直线x=1于点P
由两点之间线段最短可知为B时最小
又∵点是点A关于直线l的对称点
∴
∴为B时最小
故P即为所求点.
③设任意格点Q(m,n)关于直线x=1的对称点为(x,y)
有(m+x)÷2=1,y=n
即x=2-m,y=n
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
则纵坐标不变,横坐标为原来横坐标相反数加2
即对称点坐标为(2-m,n).
【点睛】
本题考查了坐标轴中的对称点问题,熟悉坐标点关于轴对称的坐标变换,结合图象运用数形结合思想是解题的关键.
4、
【分析】
由实数的运算法则计算即可.
【详解】
解:原式
.
【点睛】
本题考查了实数的混合运算,实数包括有理数和无理数,所以实数的混合运算包含了绝对值,幂的运算,开平方开立方等全部计算形式,仍满足先乘除后加减,有括号先算括号内的运算顺序.
5、
(1)2
(2)-2
【解析】
(1)
解:
=2-5+4+7-6
=2+4+7-5-6
=13-11
=2;
(2)
解:
=-2.
【点睛】
本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.
【真题汇编】2022年广东省广州市中考数学历年真题定向练习 卷(Ⅰ)(含答案及解析): 这是一份【真题汇编】2022年广东省广州市中考数学历年真题定向练习 卷(Ⅰ)(含答案及解析),共21页。试卷主要包含了已知4个数,下列各组图形中一定是相似形的是,定义一种新运算,下列说法正确的有,已知,,且,则的值为等内容,欢迎下载使用。
【真题汇编】2022年甘肃省兰州市中考数学历年真题定向练习 卷(Ⅰ)(精选): 这是一份【真题汇编】2022年甘肃省兰州市中考数学历年真题定向练习 卷(Ⅰ)(精选),共26页。试卷主要包含了已知,则的值为,如图,点在直线上,平分,,,则等内容,欢迎下载使用。
【真题汇编】2022年广东省清远市中考数学历年真题定向练习 卷(Ⅰ)(含答案详解): 这是一份【真题汇编】2022年广东省清远市中考数学历年真题定向练习 卷(Ⅰ)(含答案详解),共25页。