【高频真题解析】2022年广西省桂林市中考数学历年真题汇总 卷(Ⅲ)(精选)
展开2022年广西省桂林市中考数学历年真题汇总 卷(Ⅲ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列命题错误的是( )
A.所有的实数都可用数轴上的点表示 B.两点之间,线段最短
C.无理数包括正无理数、0、负有理数 D.等角的补角相等
2、已知线段AB=7,点C为直线AB上一点,且AC∶BC=4∶3,点D为线段AC的中点,则线段BD的长为( )
A.5或18.5 B.5.5或7 C.5或7 D.5.5或18.5
3、平面直角坐标系中,点P(2,1)关于x轴对称的点的坐标是( )
A. B. C. D.
4、菱形ABCD的周长是8cm,∠ABC=60°,那么这个菱形的对角线BD的长是( )
A.cm B.2cm C.1cm D.2cm
5、正八边形每个内角度数为( )
A.120° B.135° C.150° D.160°
6、如图,点P是▱ABCD边AD上的一点,E,F分别是BP,CP的中点,已知▱ABCD面积为16,那么△PEF的面积为( )
A.8 B.6 C.4 D.2
7、下列各数中,是不等式的解的是( )
A.﹣7 B.﹣1 C.0 D.9
8、的相反数是( )
A. B. C. D.3
9、如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第个图案中有2023个白色纸片,则的值为( )
A.672 B.673 C.674 D.675
10、若单项式与是同类项,则的值是( )
A.6 B.8 C.9 D.12
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、甲乙两人到沙漠中探险,他们每天向沙漠深处走30千米,已知一个人最多可以带36天的食物和水,若不准将部分食物存放于途中,其中一个人最远可以深入沙漠______千米.(要求最后两个人都要返回出发点)
2、如图,中,,,,将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是____________.
3、多项式2a2b-abc的次数是______.
4、已知一个两位数,个位上的数字比十位上的数字小4,且个位上的数字与十位上的数字的平方和比这个两位数小4,则这个两位数是___.
5、已知代数式的值是2,则代数式的值为______.
三、解答题(5小题,每小题10分,共计50分)
1、先化简,再求值.
(1)已知,求多项式的值;
(2)已知,,当的值与x的取值无关时,求多项式的值.
2、某公司销售部门2021年上半年完成的销售额如下表.
月份 | 一月份 | 二月份 | 三月份 | 四月份 | 五月份 | 六月份 |
销售额(万元) | -1.6 | -2.5 | +2.4 | +1.2 | -0.7 | +1.8 |
(正号表示销售额比上个月上升,负号表示销售额比上个月下降)
(1)上半年哪个月的销售额最高?每个月销售额最低?销售额最高的比销售额最低的高多少?
(2)这家公司2021年6月的销售额与去年年底相比是上升了还是下降了?上升或下降了多少?
3、如图,在中,,,.动点P从点A出发,沿AB以每秒4个单位长度的速度向终点B运动.过点P作交AC或BC于点Q,分别过点P、Q作AC、AB的平行线交于点M.设与重叠部分的面积为S,点P运动的时间为秒.
(1)当点Q在AC上时,CQ的长为______(用含t的代数式表示).
(2)当点M落在BC上时,求t的值.
(3)当与的重合部分为三角形时,求S与t之间的函数关系式.
(4)点N为PM中点,直接写出点N到的两个顶点的距离相等时t的值.
4、解分式方程:
(1)
(2)
5、计算:
-参考答案-
一、单选题
1、C
【分析】
根据实数与数轴的关系,线段的基本事实,无理数的分类,补角的性质,逐项判断即可求解.
【详解】
解:A、所有的实数都可用数轴上的点表示,该命题正确,故本选项不符合题意;
B、两点之间,线段最短,该命题正确,故本选项不符合题意;
C、0不是无理数,该命题错误,故本选项符合题意;
D、等角的补角相等,该命题正确,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了实数与数轴的关系,线段的基本事实,无理数的分类,补角的性质,命题的真假判断,熟练掌握实数与数轴的关系,线段的基本事实,无理数的分类,补角的性质是解题的关键.
2、C
【分析】
根据题意画出图形,再分点C在线段AB上或线段AB的延长线上两种情况进行讨论.
【详解】
解:点C在线段AB上时,如图:
∵AB=7,AC∶BC=4∶3,
∴AC=4,BC=3,
∵点D为线段AC的中点,
∴AD=DC=2,
∴BD=DC+BC=5;
点C在线段AB的延长线上时,
∵AB=7,AC∶BC=4∶3,
设BC=3x,则AC=4x,
∴AC-BC=AB,即4x-3x=7,
解得x=7,
∴BC=21,则AC=28,
∵点D为线段AC的中点,
∴AD=DC=14,
∴BD=AD-AB=7;
综上,线段BD的长为5或7.
故选:C.
【点睛】
本题考查了两点间的距离,线段中点的定义,利用线段的比例得出AC、BC的长是解题关键,要分类讨论,以防遗漏.
3、B
【分析】
直接利用关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,得出答案.
【详解】
解:点P(2,1)关于x轴对称的点的坐标是(2,-1).
故选:B.
【点睛】
本题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.
4、B
【分析】
由菱形的性质得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再证△ABC是等边三角形,得AC=AB=2(cm),则OA=1(cm),然后由勾股定理求出OB=(cm),即可求解.
【详解】
解:∵菱形ABCD的周长为8cm,
∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,
∵∠ABC=60°,
∴△ABC是等边三角形,
∴AC=AB=2cm,
∴OA=1(cm),
在Rt△AOB中,由勾股定理得:OB===(cm),
∴BD=2OB=2(cm),
故选:B.
【点睛】
此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法.
5、B
【分析】
根据正多边形的每一个内角相等,则对应的外角也相等,根据多边形的外角和为360°,进而求得一个外角的度数,即可求得正八边形每个内角度数.
【详解】
解:∵正多边形的每一个内角相等,则对应的外角也相等,
一个外角等于:
∴内角为
故选B
【点睛】
本题考查了正多边形的内角与外角的关系,利用外角求内角是解题的关键.
6、D
【分析】
根据平行线间的距离处处相等,得到,根据EF是△PBC的中位线,得到△PEF∽△PBC,EF=,得到计算即可.
【详解】
∵点P是▱ABCD边AD上的一点,且 ▱ABCD面积为16,
∴;
∵E,F分别是BP,CP的中点,
∴EF∥BC,EF=,
∴△PEF∽△PBC,
∴,
∴,
故选D.
【点睛】
本题考查了平行四边形的性质,三角形中位线定理,三角形相似的判定和性质,熟练掌握中位线定理,灵活运用三角形相似的性质是解题的关键.
7、D
【分析】
移项、合并同类项,得到不等式的解集,再选取合适的x的值即可.
【详解】
解:移项得:,
∴9为不等式的解,
故选D.
【点睛】
本题考查的是解一元一次不等式,熟知去分母,去括号,移项,合并同类项,化系数为1是解一元一次不等式的基本步骤是解答此题的关键.
8、D
【分析】
根据只有符号不同的两个数是互为相反数解答即可.
【详解】
解:的相反数是3,
故选D.
【点睛】
本题考查了相反数的定义,只有符号不同的两个数是互为相反数,正数的相反数是负数,0的相反数是0,负数的相反数是正数.
9、C
【分析】
根据题目中的图形,可以发现白色纸片的变化规律,然后根据第n个图案中白色纸片2023个,即可解题.
【详解】
解:由图可知,
第1个图案中白色纸片的个数为:1+1×3=4,
第2个图案中白色纸片的个数为:1+2×3=7,
第3个图案中白色纸片的个数为:1+3×3=10,
…
第n个图案中白色纸片的个数为:1+3n,
由题意得,1+3n =2023
解得n=674
故选:C.
【点睛】
本题考查图形的变化,发现题目中白色纸片的变化规律、利用数形结合思想解题是关键.
10、C
【分析】
根据同类项的定义可得,代入即可求出mn的值.
【详解】
解:∵与是同类项,
∴,
解得:m=3,
∴.
故选:C.
【点睛】
此题考查了同类项的定义,解题的关键是熟练掌握同类项的定义.同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也相同,那么就称这两个单项式为同类项.
二、填空题
1、720
【分析】
因为要求最远,所以两人同去耗食物,所以只一人去,另一人中途返回,两人一起出发.12天后两人都只剩24天的食物.乙分给甲12天的食物后独自带着12天的食物返回,也就是甲一共有48天的食物.
【详解】
解:[(36+36÷3)÷2]×30
=24×30
=720(千米).
答:其中一人最远可以深入沙漠720千米.
故答案为:720.
【点睛】
此题考查了有理数的混合运算,生活中方法的最佳选择,首先要想到去多远,都得返回,所以每前进一步,都要想着返回的食物,进而找到最佳答案.
2、
【分析】
如图(见解析),过点作轴于点,点作轴于点,设,从而可得,先利用勾股定理可得,从而可得,再根据旋转的性质可得,然后根据三角形全等的判定定理证出,最后根据全等三角形的性质可得,由此即可得出答案.
【详解】
解:如图,过点作轴于点,点作轴于点,
设,则,
在中,,
在中,,
,
解得,
,
由旋转的性质得:,
,
,
,
在和中,,
,
,
,
故答案为:.
【点睛】
本题考查了勾股定理、旋转、点坐标等知识点,画出图形,通过作辅助线,正确找出两个全等三角形是解题关键.
3、3
【分析】
利用几个单项式的和叫做多项式,每个单项式叫做多项式的项,多项式中次数最高的项的次数叫做多项式的次数,据此求解即可.
【详解】
解:多项式2a2b-abc的次数是3.
故答案为:3.
【点睛】
本题主要考查了多项式,正确把握多项式的项数和次数确定方法是解题关键.
4、84
【分析】
等量关系为:个位上的数字与十位上的数字的平方和=这个两位数﹣4,把相关数值代入求得整数解即可.
【详解】
设十位上的数字为x,则个位上的数字为(x﹣4).可列方程为:
x2+(x﹣4)2=10x+(x﹣4)﹣4
解得:x1=8,x2=1.5(舍),
∴x﹣4=4,
∴10x+(x﹣4)=84.
答:这个两位数为84.
故答案为:84
【点睛】
本题考查了一元二次方程的应用,根据题意列出方程是解题的关键.
5、-1
【分析】
把变形为,然后把=2代入计算.
【详解】
解:∵代数式的值是2,
∴=2,
∴==3-4=-1.
故答案为:-1.
【点睛】
此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算,也可以运用整体代入的思想,本题就利用了整体代入进行计算.
三、解答题
1、
(1),8
(2)-8
【分析】
(1)将所求式子去括号合并化简,再根据非负数的性质得到a,b的值,代入计算即可;
(2)将A,B代入2A-3B,去括号合并得到最简结果,再根据结果与x值无关得到m,n的值,最后将所求式子化简,代入计算即可.
【小题1】
解:
=
=
=
∵,
∴a-2=0,b-3=0,
∴a=2,b=3,
∴原式=
=8
【小题2】
=
=
=
=
∵的值与x的取值无关,
∴3n-6=0,m-4=0,
∴m=4,n=2,
∴
=
=
=
=
【点睛】
本题考查整式化简及求值,涉及非负数和为0,代数式的值与x无关等知识,解题的关键是掌握去括号、合并同类项的法则.
2、
(1)六月份销售额最高,二月份销售额最低,销售额最高的月份比最低的月份多4.7万元
(2)这家公司2021年6月的销售额与2020年12月相比是上升了,上升了0.6万元.
【分析】
(1)由2021年上半年的销售额,利用表格即可确定出1月-6月的销售额,可确定出最高与最低销售额;求出销售额最高与最低之差即可;
(2)求出2021年6月的销售额与2020年12月的销售额之差即可做出判断.
(1)
解:设2020年12月完成销售额为a万元.
根据题意得:2021年上半年的销售额分别为:
a-1.6;a-1.6-2.5=a-4.1;a-4.1+2.4=a-1.7;a-1.7+1.2=a-0.5;a-0.5-0.7=a-1.2;a-1.2+1.8=a+0.6,
a+0.6-( a-4.1)=4.7(万元);
则六月份销售额最高,二月份销售额最低,销售额最高的月份比最低的月份多4.7万元;
(2)
解:由(1)2020年12月完成销售额为a万元,2021年6月的销售额为a+0.6万元,
a+0.6-a=0.6>0,
所以这家公司2021年6月的销售额与2020年12月相比是上升了,上升了0.6万元.
【点睛】
本题考查了列代数式,整式的加减,以及正数与负数,弄清题意是解本题的关键.
3、(1);(2);(3)当,;当时,(4),,.
【分析】
(1)根据∠C=90°,AB=5,AC=4,得cosA=,即,又因为AP=4t,AQ=5t,即可得答案;
(2)由AQPM,APQM,可得,证△CQM∽△CAB,可得答案;
(3)当时,根据勾股定理和三角形面积可得;当,△PQM与△ABC的重合部分不为三角形;当时,由S=S△PQB-S△BPH计算得;
(4)分3中情况考虑,①当N到A、C距离相等时,过N作NE⊥AC于E,过P作PF⊥AC于F,在Rt△APF中,cosA = ,解得t = ,②当N到A、B距离相等时,过N作NG⊥AB于G,同理解得t = ,③当N到B、C距离相等时,可证明AP=BP=AB=,可得答案.
【详解】
(1)如下图:
∵∠C=90°,AB=5,AC=4,
∴cosA=
∵PQ⊥AB,
∴cosA=
∵动点P从点A出发,沿AB以每秒4个单位长度的速度向终点B运动,点P运动的时间为t(t>0)秒,
∴AP=4t,
∴
∴AQ=5t,
∴CQ=AC-AQ=4-5t,
故答案为:4-5t;
(2)
∵AQPM,APQM,
∴四边形AQMP是平行四边形.
∴.
当点M落在BC上时,
∵APQM,
∴.
∵,
∴△CQM∽△CAB,
∴.
∴.
∴.
∴当点M落在BC上时,;
(3)当时,
此时△PQM与△ABC的重合部分为三角形,
由(1)(2)知:,,
∴PQ=,
∵∠PQM=∠QPA=90°
∴,
当Q与C重合时,CQ=0,即4-5t=0,
∴
当,△PQM与△ABC的重合部分不为三角形,
当时,如下图:
∵,
∴PB=5-4t,
∵PMAC
∴,即
∴,
∵,
∴,
∴,
∴S=S△PQB-S△BPH,
.
综上所述:当,;当时,
(4)①当N到A、C距离相等时,过N作NE⊥AC于E,过P作PF⊥AC于F,如图:
∵N到A、C距离相等,NE⊥AC,
∴NE是AC垂直平分线,
∴AE=AC= 2,
∵N是PM中点,
∴PN=PM=AQ=
∴AF=AE- EF=2-
在Rt△APF中,cosA =
∴
解得t =
②当N到A、B距离相等时,过N作NG⊥AB于G,如图:
∴AG=AB=
∴PG=AG-AP=-4t
∴cos∠NPG=cosA=
∴
而PN=PM=AQ=t
∴
解得t =
③当N到B、C距离相等时,连接CP,如图:
∵PMAC,AC⊥BC
∴PM⊥BC,
∴N到B、C距离相等,
∴N在BC的垂直平分线上,即PM是BC的垂直平分线,
∴PB= PC,
∴∠PCB=∠PBC,
∴90°-∠PCB= 90°-∠PBC,即∠PCA=∠PAC,
∴PC= PA,
∴AP=BP=AB=,
∴t=
综上所述,t的值为或或
【点睛】
本题考查三角形综合应用,涉及平行四边形、三角形面积、垂直平分线等知识,解题的关键是分类画出图形,熟练应用锐角三角函数列方程.
4、
(1)
(2)
【分析】
先将分式方程化为整式方程,解出整式方程,再检验,即可求解.
(1)
解:去分母:
解得:,
检验:当时,,
故原方程的解为;
(2)
解:去分母:
解得:,
检验:当时, ,
故原方程的解为.
【点睛】
本题主要考查了解分式方程,熟练掌握解分式方程的基本步骤是解题的关键.
5、
【分析】
先根据绝对值的意义、负整数指数幂的性质、二次根式的化简和零指数幂分别化简,再计算即可.
【详解】
解:原式
【点睛】
此题考查了实数的混合运算,掌握相应的运算性质和运算法则是解答此题的关键.
【高频真题解析】2022年福建省漳州市中考数学历年真题汇总 (A)卷(精选): 这是一份【高频真题解析】2022年福建省漳州市中考数学历年真题汇总 (A)卷(精选),共23页。
【历年真题】中考数学三年高频真题汇总 卷(Ⅱ)(含答案及解析): 这是一份【历年真题】中考数学三年高频真题汇总 卷(Ⅱ)(含答案及解析),共25页。试卷主要包含了的相反数是等内容,欢迎下载使用。
【历年真题】中考数学三年高频真题汇总卷(含答案详解): 这是一份【历年真题】中考数学三年高频真题汇总卷(含答案详解),共25页。试卷主要包含了抛物线的顶点坐标是,如图,在中,,,则的值为,下列图形是中心对称图形的是.等内容,欢迎下载使用。