年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    中考数学综合练习题31

    中考数学综合练习题31第1页
    中考数学综合练习题31第2页
    中考数学综合练习题31第3页
    还剩11页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学综合练习题31

    展开

    这是一份中考数学综合练习题31,共14页。
    中考数学综合练习31
    本试卷满分为120分,考试时间为120分钟
    卷Ⅰ(选择题,共20分)

    注意事项:1.答卷I前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.
    2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.
    一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的)
    1.的相反数是
    A.7 B. C. D.
    a
    b
    1
    2
    O
    图1
    2.如图1,直线a,b相交于点O,若∠1等于40°,则∠2等于
    A.50° B.60° C.140° D.160°
    3.据2007年5月27日中央电视台“朝闻天下”报道,北京市目前汽车
    拥有量约为3 100 000辆.则3 100 000用科学记数法表示为
    A.0.31×107 B.31×105
    x
    -2
    M
    1
    y
    O
     图2
    C.3.1×105 D.3.1×106
    4.如图2,某反比例函数的图像过点M(,1),则此反比例函数
      表达式为
    A. B.
    C. D.
    5.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是
    A.12 B.9 C.4 D.3
    A
    B
    C
    D
    O
    图3
    6.图3中,EB为半圆O的直径,点A在EB的延长线上,
    AD切半圆O于点D,BC⊥AD于点C,AB=2,半圆O
    的半径为2,则BC的长为
    E
    A.2 B.1
    C.1.5 D.0.5
    7.炎炎夏日,甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,根据题意,下面所列方程中正确的是
    A. B.
    C. D.
    8.我国古代的“河图”是由3×3的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.图4给出了“河图”的部分点图,请你推算出P处所对应的点图是
    A
    B
    D
    C

    P
     图4



    20
    O 1 2 3 4
    s/km
    t/h
    图5
    10

    9.甲、乙二人沿相同的路线由A到B匀速行进,A,B两地间的路程
    为20km.他们行进的路程s(km)与甲出发后的时间t(h)之间
    的函数图像如图5所示.根据图像信息,下列说法正确的是
    A.甲的速度是4 km/ h B.乙的速度是10 km/ h
    C.乙比甲晚出发1 h D.甲比乙晚到B地3 h
    10.用M,N,P,Q各代表四种简单几何图形(线段、正三角形、正方形、圆)中的一种.
    图6-1—图6-4是由M,N,P,Q中的两种图形组合而成的(组合用“&”表示).
    M&P
    N&P
    N&Q
     M&Q
      图6-1
      图6-2
      图6-3
      图6-4




    那么,下列组合图形中,表示P&Q的是
    A
    B
    C
    D



    总 分
    核分人


    2007年河北省初中毕业生升学考试
    数 学 试 卷
    卷II(非选择题,共100分)
    注意事项:1.答卷II前,将密封线左侧的项目填写清楚.
    2.答卷II时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.

    题号


    19
    20
    21
    22
    23
    24
    25
    26
    得分










    得 分
    评卷人



    二、填空题(本大题共8个小题;每小题3分,共24分.把答案
    B
    图7
      E
    A
    F
    D
    C
    写在题中横线上)

    11.计算:=     .
    12.比较大小:7 .(填“>”、“=”或“<”)
    13.如图7,若□ABCD与□EBCF关于BC所在直线对称,∠ABE=90°,
    则∠F = °.
    2
    3
    图8
    1
    4
    5
    6
    14.若,则的值为 .
    15.图8中每一个标有数字的方块均是可以翻动的木牌,其中只有两块木牌的背面贴有中奖标志,则随机翻动一块木牌中奖的概率为________.
    图9
    B
    A
    16.如图9,在10×6的网格图中(每个小正方形的边长均为1个单位长),⊙A的半径为1,⊙B的半径为2,要使⊙A与静止的⊙B内切,那
    么⊙A由图示位置需向右平移 个单位长.
    17.已知,当n=1时,a1=0;当n=2时,a2=2;当n=3时,
    a3=0;… 则a1+a2+a3+a4+a5+a6的值为 .
    18.图10-1是三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:cm).将它们拼成如图10-2的新几何体,则该新几何体的体积为 cm3.(计算结果保留)
    图10-1
    6
    4
    4
    6
    4
    4
    6
    4
    4

    图10-2




    三、解答题(本大题共8个小题;共76分.解答应写出文字说明、证明过程或演算步骤)
    得 分
    评卷人



    19.(本小题满分7分)


    已知,,求的值.





    得 分
    评卷人



    20.(本小题满分7分)

    某段笔直的限速公路上,规定汽车的最高行驶速度不能超过60 km/h(即m/s).交通管理部门在离该公路100 m处设置了一速度监测点A,在如图11所示的坐标系中,点A位于y轴上,测速路段BC在x轴上,点B在点A的北偏西60°方向上,点C在点A的北偏东45°方向上.
    (1)请在图11中画出表示北偏东45°方向的射线AC,并标出点C的位置;
    (2)点B坐标为 ,点C坐标为 ;
    图11
    y/m
    x/m
    A(0, -100)
    B
    O
    60°


    (3)一辆汽车从点B行驶到点C所用的时间为15 s,请通过计算,判断该汽车在限速公路上是否超速行驶?(本小问中)













    得 分
    评卷人



    21.(本小题满分10分)







    得分/分
    80
    110
    86
    90
    91
    87
    95
    83
    98
    80
      甲、乙两球队比赛成绩条形统计图
    甲队
    乙队
    图12-1
    场次/场
    甲、乙两支篮球队在集训期内进行了五场比赛,将比赛成绩进行统计后,绘制成如图12-1、图12-2的统计图.
    (1)在图12-2中画出折线表示乙队在集训期内这五场比赛成绩的变化情况;
    (2)已知甲队五场比赛成绩的平均分=90分,请你计算乙队五场比赛成绩的平均分;
    (3)就这五场比赛,分别计算两队成绩的极差;
    (4)如果从甲、乙两队中选派一支球队参加
    篮球锦标赛,根据上述统计情况,试从
    平均分、折线的走势、获胜场数和极差
    四个方面分别进行简要分析,你认为选
    派哪支球队参赛更能取得好成绩?


      甲、乙两球队比赛成绩折线统计图
    图12-2
    10
    20
    30
    40
    50
    60
    70
    80
    90
    100





    0
    得分/分

    110
    场次/场
    /分
















    得 分
    评卷人



    22.(本小题满分8分)


    如图13,已知二次函数的图像经过点A和点B.
    (1)求该二次函数的表达式;
    (2)写出该抛物线的对称轴及顶点坐标;
    (3)点P(m,m)与点Q均在该函数图像上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q 到x轴的距离.


    x
    y
    O
    3
     -9
    -1
    -1
    A
    B
    图13













    得 分
    评卷人



    23.(本小题满分10分)


    在图14-1—14-5中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上.
    操作示例
    当2b<a时,F
    图14-1
    A
    B
    C
    E
    D
    H
    G
    (2b<a)
    如图14-1,在BA上选取点G,使BG=b,连结FG和CG,裁掉△FAG和△CGB并分别拼接到△FEH和△CHD的位置构成四边形FGCH.
    思考发现
    小明在操作后发现:该剪拼方法就是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上.连结CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH(如图14-1),过点F作FM⊥AE于点M(图略),利用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.进而根据正方形的判定方法,可以判断出四边形FGCH是正方形.
    实践探究
    (1)正方形FGCH的面积是 ;(用含a,b的式子表示)
    图14-3
    F
    A
    B
    C

    D
    E
    图14-4
    F
    A
    B
    C

    D
    E
    图14-2
    F
    A
    B
    C
    (E)
    D
    (2b=a)
    (a<2b<2a)
    (b=a)
    (2)类比图14-1的剪拼方法,请你就图14-2—图14-4的三种情形分别画出剪拼成一个新正方形的示意图.










    F
    图14-5
    A
    B
    C
    E
    D
    (b>a)

    联想拓展
    小明通过探究后发现:当b≤a时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移.
    当b>a时,如图14-5的图形能否剪拼成一个正方形?若能,请你在图中画出剪拼的示意图;若不能,简要说明理由.




    得 分
    评卷人



    24.(本小题满分10分)


    A
    B
    C
    E
    F
    G
    图15-2
    D
    A
    B
    C
    D
    E
    F
    G
    图15-3
    A
    B
    C
    F
    G
    图15-1
    在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图15-1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.
    (1)在图15-1中请你通过观察、测量BF与CG的
    长度,猜想并写出BF与CG满足的数量关系,
    然后证明你的猜想;
    (2)当三角尺沿AC方向平移到图15-2所示的位置时,
    一条直角边仍与AC边在同一直线上,另一条
    直角边交BC边于点D,过点D作DE⊥BA于
    点E.此时请你通过观察、测量DE、DF与CG
    的长度,猜想并写出DE+DF与CG之间满足
    的数量关系,然后证明你的猜想;
    (3)当三角尺在(2)的基础上沿AC方向继续平
    移到图15-3所示的位置(点F在线段AC上,
    且点F与点C不重合)时,(2)中的猜想是否
    仍然成立?(不用说明理由)









    得 分
    评卷人



    25.(本小题满分12分)


    一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表:
    手机型号
    A型
    B型
    C型
    进 价(单位:元/部)
    900
    1200
    1100
    预售价(单位:元/部)
    1200
    1600
    1300
    (1)用含x,y的式子表示购进C型手机的部数;
    (2)求出y与x之间的函数关系式;
    (3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.
    ①求出预估利润P(元)与x(部)的函数关系式;
    (注:预估利润P=预售总额-购机款-各种费用)
    ②求出预估利润的最大值,并写出此时购进三款手机各多少部.























    得 分
    评卷人



    26.(本小题满分12分)


    如图16,在等腰梯形ABCD中,AD∥BC,AB=DC=50,AD=75,BC=135.点P从点B出发沿折线段BA-AD-DC以每秒5个单位长的速度向点C匀速运动;点Q从点C出发沿线段CB方向以每秒3个单位长的速度匀速运动,过点Q向上作射线QK⊥BC,交折线段CD-DA-AB于点E.点P、Q同时开始运动,当点P与点C重合时停止运动,点Q也随之停止.设点P、Q运动的时间是t秒(t>0).
    (1)当点P到达终点C时,求t的值,并指出此时BQ的长;
    (2)当点P运动到AD上时,t为何值能使PQ∥DC ?
    (3)设射线QK扫过梯形ABCD的面积为S,分别求出点E运动到CD、DA上时,S与t的函数关系式;(不必写出t的取值范围)
    D
    E
    K
    P
    Q
    C
    B
    A
      图16
    (4)△PQE能否成为直角三角形?若能,写出t的取值范围;若不能,请说明理由.






















    数学试题参考答案
    说明:
    1.各地在阅卷过程中,如考生还有其它正确解法,可参照评分标准按步骤酌情给分.
    2.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分.
    3.解答右端所注分数,表示正确做到这一步应得的累加分数.只给整数分数.
    一、选择题(每小题2分,共20分)
    题 号
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    答 案
    A
    C
    D
    B
    A
    B
    D
    C
    C
    B
    二、填空题(每小题3分,共24分)
    11.a3; 12.<; 13.45; 14.2007;
    15.; 16.4或6; 17.6; 18.60.
    三、解答题(本大题共8个小题;共76分)
    19.解:原式=. …………………………………………………………………(5分)
    当时,原式=1. ………………………………………………(7分)
    (注:本题若直接代入求值正确,也相应给分)
    20.解:(1)如图1所示,射线为AC,点C为所求位置. ………………………(2分)

    C
    y/m

    A(0,-100)
    B
    O
    60°
      图1
    x/m

    45°
    (2)(,0); ………………………(4分)
    (100 ,0); ……………………………(5分)
    (3)=270(m).
    (注:此处写“270”不扣分)
    270÷15=18(m/s).∵18>,
    ∴这辆车在限速公路上超速行驶了. …(7分)
    21. 解:(1)如图2; ……………………………………………………………………(2分)
    (2)=90(分); …………………………………………………………(3分)
    图2
    10
    20
    30
    40
    50
    60
    70
    80
    90
    100





    0
    得分/分
    甲、乙两球队比赛成绩折线统计图

    110
    场次/场
    /分

    (3)甲队成绩的极差是18分,
    乙队成绩的极差是30分; ………………(5分)
    (4)从平均分看,两队的平均分相同,实力大体相当;
    从折线的走势看,甲队比赛成绩呈上升趋势,而乙
    队比赛成绩呈下降趋势;
    从获胜场数看,甲队胜三场,乙队胜两场,甲队
    成绩较好;
    从极差看,甲队比赛成绩比乙队比赛成绩波动小,
    甲队成绩较稳定. ………………………(9分)
    综上,选派甲队参赛更能取得好成绩. …(10分)
    22.解:(1)将x=-1,y=-1;x=3,y=-9分别代入得
    解得 …………………………(3分)
    ∴二次函数的表达式为. ………………………………(4分)
    (2)对称轴为;顶点坐标为(2,-10). ………………………………(6分)
    (3)将(m,m)代入,得 ,
    解得.∵m>0,∴不合题意,舍去.
    ∴ m=6. …………………………………………………………………(7分)
    ∵点P与点Q关于对称轴对称,
    ∴点Q到x轴的距离为6. ………………………………………………(8分)
    23.实践探究(1)a2+b2; …………………………………………………………(2分)
    (2)剪拼方法如图3—图5.(每图2分) ………………………(8分)
    F
    图3
    A
    B
    C
    (E)
    D
    H
    G
    F
    图6
    A
    B
    C
    E
    D
    G
    H
    F
    图5
    A
    B
    C
    D
    E
    F
    图4
    A
    B
    C

    E
    H
    D
    G








    联想拓展 能; ……………………………………………………………………(9分)
    剪拼方法如图6(图中BG=DH=b). ………………………………(10分)
    (注:图6用其它剪拼方法能拼接成面积为a2+b2的正方形均给分)
    24.(1)BF=CG; ………………………………………………………………………(1分)
    A
    B
    C
    E
    F
    G
    图7
    H
    D
    证明:在△ABF和△ACG中,
    ∵∠F=∠G=90°,∠FAB=∠GAC,AB=AC,
    ∴△ABF≌△ACG(AAS),
    ∴BF=CG. …………………………………(4分)
    (2)DE+DF=CG; …………………………………(5分)
    证明:过点D作DH⊥CG于点H(如图7). ……(6分)
    ∵DE⊥BA于点E,∠G=90°,DH⊥CG,
    ∴四边形EDHG为矩形,∴DE=HG,DH∥BG.∴∠GBC=∠HDC.
    ∵AB=AC,∴∠FCD=∠GBC=∠HDC.又∵∠F=∠DHC=90°,CD=DC,
    ∴△FDC≌△HCD(AAS),∴DF=CH.
    ∴GH+CH=DE+DF=CG,即DE+DF=CG. ………………………………(9分)
    (3)仍然成立. …………………………………………………………………(10分)
    (注:本题还可以利用面积来进行证明,比如(2)中连结AD)
    25.解:(1)60-x-y; …………………………………………………………………(2分)
    (2)由题意,得 900x+1200y+1100(60-x-y)= 61000,
    整理得 y=2x-50. ………………………………………………………(5分)
    (3)①由题意,得 P= 1200x+1600y+1300(60-x-y)- 61000-1500,
    整理得 P=500x+500. …………………………………………………(7分)
    ②购进C型手机部数为:60-x-y =110-3x.根据题意列不等式组,得
    解得 29≤x≤34.
    ∴ x范围为29≤x≤34,且x为整数.(注:不指出x为整数不扣分) …(10分)
    ∵P是x的一次函数,k=500>0,∴P随x的增大而增大.
    ∴当x取最大值34时,P有最大值,最大值为17500元. ………(11分)
    此时购进A型手机34部,B型手机18部,C型手机8部. ………(12分)
    26.解:(1)t =(50+75+50)÷5=35(秒)时,点P到达终点C. ……………(1分)
    Q
    K
    C
    H
    D
    E
    P
    B
    A
    图8
    此时,QC=35×3=105,∴BQ的长为135-105=30. ………………(2分)
    (2)如图8,若PQ∥DC,又AD∥BC,则四边形PQCD
    为平行四边形,从而PD=QC,由QC=3t,BA+AP=5t
    得50+75-5t=3t,解得t=.
    经检验,当t=时,有PQ∥DC. ………(4分)
    (3)①当点E在CD上运动F
    G
    D
    E
    K
    P
    Q
    C
    B
    A
    图9

    H
    时,如图9.分别过点A、D
    作AF⊥BC于点F,DH⊥BC于点H,则四边形
    ADHF为矩形,且△ABF≌△DCH,从而
    FH= AD=75,于是BF=CH=30.∴DH=AF=40.
    又QC=3t,从而QE=QC·tanC=3t·=4t.
    (注:用相似三角形求解亦可)
    ∴S=S⊿QCE =QE·QC=6t2; ………………………………………………………(6分)
    ②当点E在DA上运动时,如图8.过点D作DH⊥BC于点H,由①知DH=40,CH=30,又QC=3t,从而ED=QH=QC-CH=3t-30.
    ∴S= S梯形QCDE =(ED+QC)DH =120 t-600. …………………………(8分)
    (4)△PQE能成为直角三角形. ……………………………………………………(9分)
    当△PQE为直角三角形时,t的取值范围是0<t≤25且t≠或t=35. …(12分)
    (注:(4)问中没有答出t≠或t=35者各扣1分,其余写法酌情给分)
    下面是第(4)问的解法,仅供教师参考:
    ①当点P在BA(包括点A)上,即0<t≤10时,如图9.过点P作PG⊥BC于点G ,则PG=PB·sinB=4t,又有QE=4t = PG,易得四边形PGQE为矩形,此时△PQE总能成为直角三角形.
    ②当点P、E都在AD(不包括点A但包括点D)上,即10<t≤25时,如图8.
    由QK⊥BC和AD∥BC可知,此时,△PQE为直角三角形,但点P、E不能重合,即
    图10
    D
    E
    K
    P
    Q
    C
    B
    A
    5t-50+3t-30≠75,解得t≠.
    ③当点P在DC上(不包括点D但包括点C),
    即25<t≤35时,如图10.由ED>25×3-30=45,
    C(P)
    D
    F(Q)
    B
    A(E)
    图11
    可知,点P在以QE=40为直径的圆的外部,故
    ∠EPQ不会是直角.
    由∠PEQ<∠DEQ,可知∠PEQ一定是锐角.
    对于∠PQE,∠PQE≤∠CQE,只有当点P与C
    重合,即t=35时,如图11,∠PQE=90°,△PQE
    为直角三角形.
    综上所述,当△PQE为直角三角形时,t的取值范围是0<t≤25且t≠或t=35.





    相关试卷

    中考数学压轴题(31)——定义函数与函数动点综合题:

    这是一份中考数学压轴题(31)——定义函数与函数动点综合题,共7页。试卷主要包含了对某一个函数给出如下定义等内容,欢迎下载使用。

    中考数学综合练习题72:

    这是一份中考数学综合练习题72,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    中考数学综合练习题46:

    这是一份中考数学综合练习题46,共12页。试卷主要包含了-2 的相反数是_______,计算,请写出的一个同类二次根式,已知等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map