2016-2017学年重庆市涪陵区七年级(下)期末数学试卷
展开一、选择题(每小题3分,共36分)
1.(3分)9的平方根为( )
A.3B.﹣3C.±3D.
2.(3分)若是关于x、y的方程ax﹣y=3的解,则a=( )
A.1B.2C.3D.4
3.(3分)如果a<b,那么下列不等式中一定成立的是( )
A.a2<abB.ab<b2C.a2<b2D.a﹣2b<﹣b
4.(3分)如果点P(m+3,m+1)在x轴上,则点P的坐标为( )
A.(0,2)B.(2,0)C.(4,0)D.(0,﹣4)
5.(3分)在下列实数:、、、、﹣1.010010001…中,无理数有( )
A.1个B.2个C.3个D.4个
6.(3分)在平面直角坐标系中,点A的坐标为(1,2),将点A向右平移3个单位长度后得到A′,则点A′的坐标是( )
A.(﹣2,2)B.(1,5)C.(1,﹣1)D.(4,2)
7.(3分)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )
A.134石B.169石C.338石D.1365石
8.(3分)下列调查中,适宜采用普查方式的是( )
A.调查涪陵电视台节目《晚间播报》的收视率
B.调查涪陵市民对皮影表演艺术的喜爱程度
C.调查涪陵城区居民对“武陵山大裂谷”的知晓率
D.调查我国首艘宇宙飞船“天舟一号”的零部件质量
9.(3分)不等式组的解集在数轴上表示为( )
A.B.C.D.
10.(3分)小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为( )
A.B.C.D.
11.(3分)如图,已知∠A=70°,O是AB上一点,直线OD与AB的夹角∠BOD=82°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转( )度.
A.12B.18C.22D.22
12.(3分)下列图形都是由圆和几个黑色围棋子按一定规律组成,图①中有4个黑色棋子,图②中有7个黑色棋子,图③中有10个黑色棋子,…,依次规律,图⑨中黑色棋子的个数是( )
A.23B.25C.26D.28
二、填空题(每小题2分,共12分)
13.(2分)不等式<的解集是 .
14.(2分)已知a,b为两个连续整数,且,则a+b= .
15.(2分)如图,计划把水从河中引到水池A中,先过点A作AB⊥CD,垂足为点B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是 .
16.(2分)某班学生参加环保知识竞赛,已知竞赛得分都是整数.把参赛学生的成绩整理后分为6小组,画出竞赛成绩的频数分布直方图(如图所示),根据图中的信息,可得成绩高于60分的学生占全班参赛人数的百分率是 .
17.(2分)《孙子算经》是中国传统数学最重要的著作,约成书于四、五世纪.现在传本的《孙子算经》共三卷.卷上叙述算筹记数的纵横相间制度和筹算乘除法则;卷中举例说明筹算分数算法和筹算开平方法;卷下记录算题,不但提供了答案,而且还给出了解法.其中记载:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”
译文:“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问长木长多少尺?”设绳长x尺,长木为y尺,可列方程组为 .
18.(2分)如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A→…的规律紧绕在四边形ABCD的边上.则细线的另一端所在位置的点的坐标是 .
三、解答题(每小题6分,共36分)
19.(6分)计算:5+|﹣1|﹣++(﹣1)2017.
20.(6分)解方程组.
21.(6分)解不等式组.
22.(6分)如图,已知AB∥CD,EF交AB于点E,交CD于点F,FG平分∠EFD,交AB于点G.若∠1=50°,求∠BGF的度数.
23.(6分)在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次调查中,一共调查了 名同学;
(2)条形统计图中,m= ,n= ;
(3)扇形统计图中,艺术类读物所在扇形的圆心角是 度;
(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?
24.(6分)已知:A(0,1),B(2,0),C(4,3)
(1)在坐标系中描出各点,画出△ABC.
(2)求△ABC的面积;
(3)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.
25.(8分)潼南绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:
说明:不同种植户种植的同类蔬菜每亩平均收入相等.
(1)求A、B两类蔬菜每亩平均收入各是多少元?
(2)某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.
26.(8分)如图1,已知直线PQ∥MN,点A在直线PQ上,点C、D在直线MN上,连接AC、AD,∠PAC=50°,∠ADC=30°,AE平分∠PAD,CE平分∠ACD,AE与CE相交于E.
(1)求∠AEC的度数;
(2)若将图1中的线段AD沿MN向右平移到A1D1如图2所示位置,此时A1E平分∠AA1D1,CE平分∠ACD1,A1E与CE相交于E,∠PAC=50°,∠A1D1C=30°,求∠A1EC的度数.
(3)若将图1中的线段AD沿MN向左平移到A1D1如图3所示位置,其他条件与(2)相同,求此时∠A1EC的度数.
2016-2017学年重庆市涪陵区七年级(下)期末数学试卷(教师版)
一、选择题(每小题3分,共36分)
1.(3分)9的平方根为( )
A.3B.﹣3C.±3D.
解:9的平方根有:=±3.
故选:C.
2.(3分)若是关于x、y的方程ax﹣y=3的解,则a=( )
A.1B.2C.3D.4
解:∵是关于x、y的方程ax﹣y=3的解,
∴代入得:2a﹣1=3,
解得:a=2,
故选:B.
3.(3分)如果a<b,那么下列不等式中一定成立的是( )
A.a2<abB.ab<b2C.a2<b2D.a﹣2b<﹣b
解:∵a<b,
∴a﹣2b<b﹣2b,
即a﹣2b<﹣b,
故选:D.
4.(3分)如果点P(m+3,m+1)在x轴上,则点P的坐标为( )
A.(0,2)B.(2,0)C.(4,0)D.(0,﹣4)
解:∵点P(m+3,m+1)在x轴上,
∴y=0,
∴m+1=0,
解得:m=﹣1,
∴m+3=﹣1+3=2,
∴点P的坐标为(2,0).
故选:B.
5.(3分)在下列实数:、、、、﹣1.010010001…中,无理数有( )
A.1个B.2个C.3个D.4个
解:、、﹣1.010010001…是无理数,
故选:C.
6.(3分)在平面直角坐标系中,点A的坐标为(1,2),将点A向右平移3个单位长度后得到A′,则点A′的坐标是( )
A.(﹣2,2)B.(1,5)C.(1,﹣1)D.(4,2)
解:点A(1,2)向右平移3个单位长度得到的点A′的坐标是(1+3,2),即(4,2).
故选:D.
7.(3分)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )
A.134石B.169石C.338石D.1365石
解:根据题意得:
1534×≈169(石),
答:这批米内夹谷约为169石;
故选:B.
8.(3分)下列调查中,适宜采用普查方式的是( )
A.调查涪陵电视台节目《晚间播报》的收视率
B.调查涪陵市民对皮影表演艺术的喜爱程度
C.调查涪陵城区居民对“武陵山大裂谷”的知晓率
D.调查我国首艘宇宙飞船“天舟一号”的零部件质量
解:A、调查涪陵电视台节目《晚间播报》的收视率,适合抽样调查,故A选项错误;
B、调查涪陵市民对皮影表演艺术的喜爱程度,适合抽样调查,故B选项错误;
C、调查涪陵城区居民对“武陵山大裂谷”的知晓率,适合抽样调查,故C选项错误;
D、调查我国首艘宇宙飞船“天舟一号”的零部件质量,适于全面调查,故D选项正确.
故选:D.
9.(3分)不等式组的解集在数轴上表示为( )
A.B.C.D.
解:,
由①得,x>1,
由②得,x≥2,
故此不等式组得解集为:x≥2.
在数轴上表示为:
.
故选:A.
10.(3分)小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为( )
A.B.C.D.
【解答】解:∵方程组的解为,
∴将x=5代入2x﹣y=12,得y=﹣2,
将x=5,y=﹣2代入2x+y得,2x+y=2×5+(﹣2)=8,
∴●=8,★=﹣2,
故选:D.
11.(3分)如图,已知∠A=70°,O是AB上一点,直线OD与AB的夹角∠BOD=82°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转( )度.
A.12B.18C.22D.22
【解答】解:∵OD'∥AC,
∴∠BOD'=∠A=70°,
∴∠DOD'=82°﹣70°=12°.
故选:A.
12.(3分)下列图形都是由圆和几个黑色围棋子按一定规律组成,图①中有4个黑色棋子,图②中有7个黑色棋子,图③中有10个黑色棋子,…,依次规律,图⑨中黑色棋子的个数是( )
A.23B.25C.26D.28
【解答】解:∵图①中有3+1=4个黑色棋子,
图②中有3×2+1=7个黑色棋子,
图③中有3×3+1=10个黑色棋子,
…
图n中黑色棋子的个数是3n+1,
由此图⑨中黑色棋子的个数是3×9+1=28.
故选:D.
二、填空题(每小题2分,共12分)
13.(2分)不等式<的解集是 x<3 .
【解答】解:<,
去分母得:3(x﹣1)<2x,
去括号得:3x﹣3<2x,
移项、合并同类项得:x<3,
故答案为x<3.
14.(2分)已知a,b为两个连续整数,且,则a+b= 7 .
【解答】解:∵32<13<42,
∴3<<4,
即a=3,b=b,
所以a+b=7.
故答案为:7.
15.(2分)如图,计划把水从河中引到水池A中,先过点A作AB⊥CD,垂足为点B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是 垂线段最短 .
【解答】解:先过点A作AB⊥CD,垂足为点B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是垂线段最短;
故答案为:垂线段最短.
16.(2分)某班学生参加环保知识竞赛,已知竞赛得分都是整数.把参赛学生的成绩整理后分为6小组,画出竞赛成绩的频数分布直方图(如图所示),根据图中的信息,可得成绩高于60分的学生占全班参赛人数的百分率是 80% .
【解答】解:∵全班的总人数为3+6+12+11+7+6=45人,其中成绩高于60分的学生有12+11+7+6=36人,
∴成绩高于60分的学生占全班参赛人数的百分率是×100%=80%,
故答案为:80%.
17.(2分)《孙子算经》是中国传统数学最重要的著作,约成书于四、五世纪.现在传本的《孙子算经》共三卷.卷上叙述算筹记数的纵横相间制度和筹算乘除法则;卷中举例说明筹算分数算法和筹算开平方法;卷下记录算题,不但提供了答案,而且还给出了解法.其中记载:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”
译文:“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问长木长多少尺?”设绳长x尺,长木为y尺,可列方程组为 .
【解答】解:设绳长x尺,长木为y尺,
依题意得,
故答案为:.
18.(2分)如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A→…的规律紧绕在四边形ABCD的边上.则细线的另一端所在位置的点的坐标是 (1,﹣2) .
【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),
∴AB=CD=2,AD=BC=3,且四边形ABCD为矩形,
∴矩形ABCD的周长C矩形ABCD=2(AB+BC)=10.
∵2017=201×10+7,AB+BC+CD=7,
∴细线的另一端落在点D上,即(1,﹣2).
故答案为(1,﹣2).
三、解答题(每小题6分,共36分)
19.(6分)计算:5+|﹣1|﹣++(﹣1)2017.
【解答】解:原式=5+1﹣2+3﹣1=6.
20.(6分)解方程组.
【解答】解:方程组整理得:,
①﹣②得:2x=﹣6,
即x=﹣3,
将x=﹣3代入①,得:y=﹣,
则方程组的解为.
21.(6分)解不等式组.
【解答】解:,
由①得:x≤1,
由②得:x>﹣2,
不等式组的解集为:﹣2<x≤1.
22.(6分)如图,已知AB∥CD,EF交AB于点E,交CD于点F,FG平分∠EFD,交AB于点G.若∠1=50°,求∠BGF的度数.
【解答】解:∵AB∥CD,∠1=50°,
∴∠CFE=∠1=50°.
∵∠CFE+∠EFD=180°,
∴∠EFD=180°﹣∠CEF=130°.
∵FG平分∠EFD,
∴∠DFG=∠EFD=65°.
∵AB∥CD,
∴∠BGF+∠DFG=180°,
∴∠BGF=180°﹣∠DFG=180°﹣65°=115°.
23.(6分)在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次调查中,一共调查了 200 名同学;
(2)条形统计图中,m= 40 ,n= 60 ;
(3)扇形统计图中,艺术类读物所在扇形的圆心角是 72 度;
(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?
【解答】解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,
故本次调查中,一共调查了:70÷35%=200人,
故答案为:200;
(2)根据科普类所占百分比为:30%,
则科普类人数为:n=200×30%=60人,
m=200﹣70﹣30﹣60=40人,
故m=40,n=60;
故答案为:40,60;
(3)艺术类读物所在扇形的圆心角是:×360°=72°,
故答案为:72;
(4)由题意,得 (册).
答:学校购买其他类读物900册比较合理.
24.(6分)已知:A(0,1),B(2,0),C(4,3)
(1)在坐标系中描出各点,画出△ABC.
(2)求△ABC的面积;
(3)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.
【解答】解:(1)如图所示:
(2)过点C向x、y轴作垂线,垂足为D、E.
∴四边形DOEC的面积=3×4=12,△BCD的面积==3,△ACE的面积==4,△AOB的面积==1.
∴△ABC的面积=四边形DOEC的面积﹣△ACE的面积﹣△BCD的面积﹣△AOB的面积
=12﹣3﹣4﹣1=4.
当点p在x轴上时,△ABP的面积==4,即:,解得:BP=8,
所点P的坐标为(10,0)或(﹣6,0);
当点P在y轴上时,△ABP的面积==4,即,解得:AP=4.
所以点P的坐标为(0,5)或(0,﹣3).
所以点P的坐标为(0,5)或(0,﹣3)或(10,0)或(﹣6,0).
25.(8分)潼南绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:
说明:不同种植户种植的同类蔬菜每亩平均收入相等.
(1)求A、B两类蔬菜每亩平均收入各是多少元?
(2)某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.
【解答】解:(1)设A、B两类蔬菜每亩平均收入分别是x元,y元.
由题意得:,
解得:,
答:A、B两类蔬菜每亩平均收入分别是3000元,3500元.
(2)设用来种植A类蔬菜的面积a亩,则用来种植B类蔬菜的面积为(20﹣a)亩.
由题意得:,
解得:10<a≤14.
∵a取整数为:11、12、13、14.
∴租地方案为:
26.(8分)如图1,已知直线PQ∥MN,点A在直线PQ上,点C、D在直线MN上,连接AC、AD,∠PAC=50°,∠ADC=30°,AE平分∠PAD,CE平分∠ACD,AE与CE相交于E.
(1)求∠AEC的度数;
(2)若将图1中的线段AD沿MN向右平移到A1D1如图2所示位置,此时A1E平分∠AA1D1,CE平分∠ACD1,A1E与CE相交于E,∠PAC=50°,∠A1D1C=30°,求∠A1EC的度数.
(3)若将图1中的线段AD沿MN向左平移到A1D1如图3所示位置,其他条件与(2)相同,求此时∠A1EC的度数.
【解答】解:(1)如图1所示:
∵直线PQ∥MN,∠ADC=30°,
∴∠ADC=∠QAD=30°,
∴∠PAD=150°,
∵∠PAC=50°,AE平分∠PAD,
∴∠PAE=75°,
∴∠CAE=25°,
可得∠PAC=∠ACN=50°,
∵CE平分∠ACD,
∴∠ECA=25°,
∴∠AEC=180°﹣25°﹣25°=130°;
(2)如图2所示:
∵∠A1D1C=30°,线段AD沿MN向右平移到A1D1,PQ∥MN,
∴∠QA1D1=30°,
∴∠PA1D1=150°,
∵A1E平分∠AA1D1,
∴∠PA1E=∠EA1D1=75°,
∵∠PAC=50°,PQ∥MN,
∴∠CAQ=130°,∠ACN=50°,
∵CE平分∠ACD1,
∴∠ACE=25°,
∴∠CEA1=360°﹣25°﹣130°﹣75°=130°;
(3)如图3所示:
过点E作FE∥PQ,
∵∠A1D1C=30°,线段AD沿MN向左平移到A1D1,PQ∥MN,
∴∠QA1D1=30°,
∵A1E平分∠AA1D1,
∴∠QA1E=∠2=15°,
∵∠PAC=50°,PQ∥MN,
∴∠ACN=50°,
∵CE平分∠ACD1,
∴∠ACE=∠ECN=∠1=25°,
∴∠CEA1=∠1+∠2=15°+25°=40°.
种植户
种植A类蔬菜面积
(单位:亩)
种植B类蔬菜面积
(单位:亩)
总收入
(单位:元)
甲
3
1
12500
乙
2
3
16500
种植户
种植A类蔬菜面积
(单位:亩)
种植B类蔬菜面积
(单位:亩)
总收入
(单位:元)
甲
3
1
12500
乙
2
3
16500
类别
种植面积 单位:(亩)
A
11
12
13
14
B
9
8
7
6
重庆市涪陵区2021-2022学年七年级(下)期末数学试卷(人教版 含答案): 这是一份重庆市涪陵区2021-2022学年七年级(下)期末数学试卷(人教版 含答案),共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年重庆市涪陵区八年级(上)期末数学试卷(含解析): 这是一份2023-2024学年重庆市涪陵区八年级(上)期末数学试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
重庆市涪陵区2023-2024学年上学期八年级期末质量监测数学试卷: 这是一份重庆市涪陵区2023-2024学年上学期八年级期末质量监测数学试卷,共4页。