所属成套资源:高考数学(理数)一轮精品复习讲与练(学生版+教师版)
高考数学(理数)一轮精品复习:第9章《统计与统计案例》讲与练(38页学生版)
展开
这是一份高考数学(理数)一轮精品复习:第9章《统计与统计案例》讲与练(38页学生版),共39页。试卷主要包含了随机抽样; 2,4,则x,y的值分别为,79 kg等内容,欢迎下载使用。
第十章统计与统计案例
第一节 统 计
本节主要包括2个知识点: 1.随机抽样; 2.用样本估计总体.
突破点(一) 随机抽样
1.简单随机抽样
(1)定义:设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.
(2)最常用的简单随机抽样的方法:抽签法和随机数法.
2.系统抽样
在抽样时,将总体分成均衡的几个部分,然后按照事先确定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样方法叫做系统抽样(也称为机械抽样).
3.分层抽样
在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.
4.三种抽样方法的比较
类别
共同点
各自特点
相互联系
适用范围
简单随机抽样
均为不放回抽样,且抽样过程中每个个体被抽取的机会相等
从总体中逐个抽取
是后两种方法的基础
总体中的个数较少
系统抽样
将总体均分成几部分,按事先确定的规则在各部分中抽取
在起始部分抽样时采用简单随机抽样
元素个数很多且均衡的总体抽样
分层抽样
将总体分成几层,分层按比例进行抽取
各层抽样时采用简单随机抽样或系统抽样
总体由差异明显的几部分组成
1.判断题
(1)简单随机抽样是一种不放回抽样.( )
(2)简单随机抽样每个个体被抽到的机会不一样,与先后有关.( )
(3)系统抽样在起始部分抽样时采用简单随机抽样.( )
(4)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.( )
(5)分层抽样中,每个个体被抽到的可能性与层数及分层有关.( )
2.填空题
(1)利用简单随机抽样从含有8个个体的总体中抽取一个容量为4的样本,则总体中每个个体被抽到的概率是________.
(2)老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是________.
(3)某公司共有1 000名员工,下设若干部门,现采用分层抽样方法,从全体员工中抽取一个样本容量为80的样本,已告知广告部门被抽取了4个员工,则广告部门的员工人数为________.
(4)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.
简单随机抽样
1.抽签法的步骤
第一步,将总体中的N个个体编号;
第二步,将这N个号码写在形状、大小相同的号签上;
第三步,将号签放在同一不透明的箱中,并搅拌均匀;
第四步,从箱中每次抽取1个号签,连续抽取k次;
第五步,将总体中与抽取的号签的编号一致的k个个体取出.
2.随机数法的步骤
第一步,将个体编号;
第二步,在随机数表中任选一个数开始;
第三步,从选定的数开始,按照一定抽样规则在随机数表中选取数字,取足满足要求的数字就得到样本的号码.
[例1] (1)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )
7816
6572
0802
6314
0702
4369
9728
0198
3204
9234
4935
8200
3623
4869
6938
7481
A.08 B.07
C.02 D.01
(2)下列抽取样本的方式不属于简单随机抽样的有________.
①从无限多个个体中抽取100个个体作为样本.
②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里.
③从20件玩具中一次性抽取3件进行质量检验.
④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.
系统抽样
系统抽样的步骤
[例2] (1)为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )
A.50 B.40
C.25 D.20
(2)将高一(九)班参加社会实践编号为1,2,3,…,48的48名学生,采用系统抽样的方法抽取一个容量为4的样本,已知5号,29号,41号学生在样本中,则样本中还有一名学生的编号是________.
[易错提醒]
用系统抽样法抽取样本,当不为整数时,取k=,即先从总体中用简单随机抽样的方法剔除(N-nk)个个体,且剔除多余的个体不影响抽样的公平性.
分层抽样
进行分层抽样的相关计算时,常利用以下关系式巧解:
(1)=;
(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.
[例3] (1)某校为了解学生学习的情况,采用分层抽样的方法从高一1 000人、高二1 200 人、高三n人中,抽取81人进行问卷调查.已知高二被抽取的人数为30,那么n=( )
A.860 B.720
C.1 020 D.1 040
(2)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.
(3)某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人).
篮球组
书画组
乐器组
高一
45
30
a
高二
15
10
20
学校要对这三个小组的活动效果进行抽样调查,按小组分层抽样的方法,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a的值为________.
[方法技巧]
分层抽样的解题策略
(1)分层抽样中分多少层,如何分层要视具体情况而定,总的原则是:层内样本的差异要小,两层之间的样本差异要大,且互不重叠.
(2)为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同.
(3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样.
(4)抽样比==.
1.某工厂的质检人员对生产的100件产品,采用随机数法抽取10件检查,对100件产品采用下面的编号方法:
①1,2,3,…,100; ②001,002,…,100;
③00,01,02,…,99; ④01,02,03,…,100.
其中正确的序号是( )
A.②③④ B.③④
C.②③ D.①②
2.对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )
A.p1=p2
相关试卷
这是一份高考数学(理数)一轮精品复习:第9章《统计与统计案例》讲与练(31页教师版),共50页。试卷主要包含了随机抽样; 2,6,所以x1-x2=13-9等内容,欢迎下载使用。
这是一份高考数学(理数)一轮复习:课时达标检测51《统计案例》(学生版)
这是一份高考数学(理数)一轮课后刷题练习:第9章 统计与统计案例9.3(学生版),共9页。